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A B S T R A C T

We present a novel method for the label-free detection of amyloid-beta (Aβ) plaques, the key
hallmark of Alzheimer’s disease, in human brain tissue sections. Conventionally, immunohisto-
chemistry (IHC) is employed for the characterization of Aβ plaques, hindering subsequent anal-
ysis. Here, a semi-supervised convolutional neural network (CNN) is trained to detect Aβ plaques
in quantum cascade laser infrared (QCL-IR) microscopy images. Laser microdissection (LMD) is
then used to precisely extract plaques from snap-frozen, unstained tissue sections. Mass
spectrometry-based proteomics reveals a loss of soluble proteins in IHC stained samples. Our
method prevents this loss and provides a novel tool that expands the scope of molecular analysis
methods to chemically native plaques. Insight into soluble plaque components will complement
our understanding of plaques and their role in Alzheimer’s disease.

1. Introduction

Alzheimer’s disease (AD) is a devastating and prevalent neurodegenerative disease that affects more than 35 million people
worldwide, which is predicted to rise up to 115 million cases by 2050 [1]. The main neuropathological hallmark of AD is the
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accumulation of Aβ plaques in the brain. The well-established, but hotly debated, amyloid cascade hypothesis posits that an imbalance
between Aβ production and clearance leads to the extracellular accumulation of Aβ [2–4]. Aβ monomers misfold to form β-sheet-rich
oligomers and fibrils that aggregate as plaques [5–7]. The aggregated Aβ is proposed to cause synaptic stress, tau hyper-
phosphorylation, and neuronal injury that eventually results in neuronal death [2]. As AD progresses, there is widespread neuro-
degeneration throughout the brain, which ultimately leads to dementia.

Traditionally, Aβ plaques are detected in brain tissue sections using stains like Congo red, Thioflavin S or anti-Aβ IHC, e.g. to study
the plaque morphology or to perform neuropathological diagnosis. Such staining methods involve the use of various solvents, de-
tergents and other reagents that alter the chemical composition of the sample. This may impose a yet uncharacterized bias onto
downstream analysis. Here, we present a novel label-free plaque detection method and use it to investigate the influence of IHC onto
the tissue proteome.

In recent years, spectral imaging techniques, such as infrared (IR) imaging, have been explored to simultaneously investigate the
morphology and chemical composition of tissues. IR imaging obtains high-resolution hyperspectral images of tissue sections without
the need to process the tissue, preserving the tissue in its chemically native state. This facilitates a chemically unbiased investigation
and makes unaltered samples available for further downstream analysis. IR imaging has been applied by several groups for the
classification of cancerous tissues [8–12]. For example, the identification, subtyping, grading, and molecular alterations of colon and
lung cancer has been reported by our group [13–20]. The introduction of quantum cascade lasers (QCLs) as light sources in IR imaging
has greatly reduced measurement, enabling rapid analysis of whole tissue sections [19–24]. The combination with LMD allows for the
precise extraction and molecular analysis of pathologic tissue regions [16,19,25].

A label-free detection and subsequent extraction of Aβ plaques in AD is desirable because it allows the unimpeded investigation of
sensitive tissue components, such as soluble proteins, lipids, and unstable Aβ oligomers. Aβ plaques in AD have been investigated with
IR imaging by several groups, yielding insights into the protein secondary structure and lipid composition of plaques [26–30]. Our
group previously demonstrated that mean IR spectra of plaques differ significantly from their surrounding tissue [7]. However, in-
dividual pixel spectra alone are insufficient for reliably identifying Aβ-positive regions, as we have demonstrated ourselves in a
preliminary study, detailed in the supplementary material (Supplementary Fig. S1). This is presumably due to the significant chemical
heterogeneity within plaques [31,32]. This variability underscores the need for a detailed chemical characterization of plaques. Given
these challenges, IR imaging is particularly promising as it may allow for the label-free detection of plaques based on their chemical
composition.

Machine learning approaches, particularly neural networks (NNs), have emerged as powerful tools in the field of digital pathology
[33], enabling automated classification and segmentation tasks. NNs, inspired by the interconnectedness of neurons in the human
brain, have the ability to learn complex patterns and relationships within large-scale datasets which makes them particularly
well-suited for the analysis of medical images. The combination of IR microscopic images with deep CNNs has significantly enhanced
the ability to identify and to precisely localize pathological tissue regions [20,34]. In the realm of AD pathology, the integration of NNs
with spectral imaging data offers a unique opportunity to leverage the advantages of both techniques, thereby holding great promise
for advancing plaque detection and characterization. Here, we train a weakly supervised CNN to detect plaques in QCL-IR images. To
the best of our knowledge, our current work comprises the first successful label-free detection of Aβ plaques with an accuracy com-
parable to that of the established gold standard IHC.

In this paper, we present a novel framework that combines QCL-IR and CNNs for the automated detection of Aβ plaques in post
mortem AD brain tissue allowing for unimpeded downstream analysis. The proteome of label-free plaques was compared to that of
plaques from IHC stained tissue. As expected, we found a significantly reduced abundance of soluble proteins that were apparently lost
during the IHC procedure. This emphasizes that the label-free detection of Aβ plaques harbors a great potential for further unraveling
the molecular composition of plaques. This is crucial for understanding the role of Aβ plaques in AD pathogenesis and may enable the
discovery of new biomarkers and therapeutic targets in AD.

2. Results

2.1. QCL-IR and anti-Aβ IHC images serve as training data for the CNN

The CNN is trained with label-free QCL-IR and corresponding anti-Aβ IHC images. The latter guide the selection of suitable regions
of interest (ROIs) and are used during the training process. The final CNN only requires label-free QCL-IR images to detect plaques in
unstained tissue sections.

Fig. 1 provides an overview of the label-free QCL-IR and IHC images. Both are high-resolution, whole-slide microscopy images of
brain tissue sections, which are several centimeters in width and height. Fig. 1A1 displays a QCL-IR image of such a section, visualized
by the absorbance of the Amide I band of the protein backbone around 1655 cm− 1. Tissue folds from the sectioning procedure appear
as white lines. The dark line on the lower left is a sulcus; a brain fold where two gyri converge. After QCL-IR imaging, the sections are
immunostained against Aβ, scanned with brightfield microscopy and precisely aligned with the QCL-IR image [7]. In Fig. 1B1, the
plaques are visible as brown dots, mostly within the gray matter region in the left and upper perimeter of the sample. Fig. 1A2 and 1B2
show magnifications of a ROI containing a cluster of plaques. The QCL-IR image in Fig. 1A2 is dominated by the tissue morphology,
which only allows the distinction of a few objects. One of them is a classic cored plaque, faintly recognizable as a white dot, surrounded
by a ring (orange asterisk). In the IHC image (Fig. 1B2), several plaques are visible, including the aforementioned classic cored plaques
that are easily recognizable by their dark brown cores, surrounded by a light brown corona [35,36]. Additionally, compact, and diffuse
plaques are visible [35,37]. Aβ-free tissue appears white, sprinkled with violet dots from the cresyl violet counterstain. Fig. 1C depicts
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QCL-IR pixel spectra from plaques and Aβ-free areas, corresponding to the arrows in Fig. 1B2 and 1C2. The spectral differences be-
tween the pixel spectra are subtle, but noticeable variations are observed (i) around the ester band at 1740 cm− 1, (ii) in the C-H
deformations bands between 1480 and 1430 cm− 1, and (iii) in the region 1320 to 1200 cm− 1, where multiple IR absorbance bands
overlap [38,39]. A high variability in Aβ plaque spectra is observed both across and within cases (Supplementary Fig. S2), with some
pixel spectra of plaques closely resembling the mean spectra of the Aβ-free regions. Our deep learning approach aims to utilize the
presented spectral differences and spatial image information to detect plaques in QCL-IR images.

2.2. An optimized workflow yields large quantities of training data

To create large quantities of training data for the CNN, we developed a comprehensive workflow. It facilitates (i) the production of
suitable tissue samples, (ii) the measurement of whole-slide QCL-IR images, (iii) IHC staining against Aβ followed by brightfield
microscopy, (iv) the precise alignment of both images, (v) the selection of ROIs, and (vi) their preprocessing. Fig. 2 gives an overview of
the workflow, whereas a detailed description of each step can be found in the method section. Fig. 2A depicts the experimental phase of
the procedure. First, snap-frozen tissue blocks of the frontal lobe, temporal lobe, and parietal lobe are sectioned at 10 μm and thaw-
mounted on Polyethylene terephthalate (PET) slides. The sections are imaged with the QCL-IR microscope Spero-QT (Daylight So-
lutions) and subsequently stained against Aβ using indirect chromogenic IHC. The stained sample is scanned with a brightfield mi-
croscope (BX61, Olympus). The computational portion of the workflow is depicted in Fig. 2B. First, a custom software is used to
determine an affine transformation that precisely maps the IHC image onto the QCL-IR image coordinates [7]. Then, IHC ROIs are
selected and binarized, with Aβ-positive pixels being 1 and Aβ-free pixels being 0. Each ROI is labeled accordingly as Aβ-containing (y
= 1) or Aβ-free (y = 0). A CNN called Comparative Segmentation Network (CompSegNet) [34] is trained on these binary ROI labels to
identify Aβ plaques in QCR-IR images.

Fig. 1. Quantum cascade laser infrared (QCL-IR) and immunohistochemistry (IHC) imaging data.
A1 QCL-IR image of a brain tissue section. Pixel values correspond to the IR absorbance of the Amide I band. A2Magnification of the QCL-IR image.
Some plaques are marked with orange arrows and a selected classic cored plaque is indicated with an asterisk. Some Aβ-free areas are marked with
blue arrows. B1 Anti-Aβ IHC image of the same section, stained and scanned after QCL-IR experiments. Aβ plaques are visible as brown dots. B2
Magnification of the IHC image, corresponding to A2. C QCL-IR pixel spectra from plaques (orange) and Aβ-free tissue (blue). The corresponding
pixels are indicated by arrows in A2 and the spectrum of the selected classic cored plaque is indicated with an asterisk. The spectra are offset by
constant values for better visibility.
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2.3. The neural network architecture for Aβ plaque detection is a semi-supervised framework

The CompSegNet is a semi-supervised approach which is trained on binary labels to overcome the need for a pixel precise
annotation. It infers a segmentation of Aβ plaques during training while using problem-specific background masks. Fig. 3A illustrates
the training process of the CNN. The input comprises a dataset of ROIs of size 64 × 64 × 427, corresponding to 269 × 269 μm of tissue,
and consists of Aβ plaque (orange) and Aβ-free (blue) images. The output is an activation map, a grayscale image that indicates the
predicted potentiality that a plaque is present. The training process aims to infer an activation map by localizing Aβ structures in an Aβ
positive sample. For a positive ROI (y = 1), the output map should approximate a value of 1 for positions where Aβ is present and 0 for
Aβ-free pixels. For a ROI with label y = 0, activation should approach 0 across all pixels. During the training process, the network is
validated using a separate dataset which is distinct from the training data to evaluate the model’s performance and its generalization
ability. The CompSegNet consists of a depth-reduced U-Net [40] architecture, in which an QCL-IR image ROI is processed through a
series of down- and up-convolution layers to produce an activation map of the same spatial dimensions as the input image. Each
activation map is then weighted by their binary mask, so that Aβ-free background positions are set to 0 and then averaged in the
connected pooling neuron q that is regulated by a characteristic transfer function (Fig. 3B). The purpose of the transfer function is to
guide the learning process towards identifying a certain amount of Aβ in positive ROIs (α < Aβ < α + β) and minimizing the activation
in Aβ-free images while using two thresholds. By utilizing the pooling neuron, the segmenting network effectively becomes a binary
classifier, where the classification accuracy depends on the segmentation output from the activation layer. The final loss is back-
propagated through the network and enables the learning process. The loss function consists of two terms: a background loss which
penalizes activated pixels which are masked out or belong to the Aβ-free group and a class-loss which weights the two classes based on
the amount of the relative input patches in the dataset.

2.4. The NN is able to generalize and shows high specificity on hold-out data

CompSegNet was trained on hyperspectral data for 300 epochs. Fig. 4A illustrates the loss curves for the training and validation
dataset with an initial plateau phase which is characteristic for the CompSegNet. Afterwards, the training loss decreased steadily and
converged around epoch 150 with only marginal fluctuations (Fig. 4A Zoom-In). Epoch 162 (dotted line) was selected based on the
highest specificity, taking into account accuracy (Fig. 4B), sensitivity, specificity, F1 score and area under receiver operating char-
acteristic curve (AUC-ROC) (Fig. 4C) on the validation dataset (Fig. 4D). The model’s (epoch 162) ability to generalize to unseen data
was assessed by validating its performance on an hold-out test set (

∑
n = {3 AD patients, 1 non-AD patient}, Table 1). Fig. 4C and D

shows similar results for validation and test set, with an AUC-ROC value of 0.987 and a F1-score of 0.94 on the test data, indicating a

Fig. 2. Workflow for training data generation.
A Experimental phase: Snap-frozen tissue of the frontal lobe, the temporal lobe, and the parietal lobe is cut into 10 μm sections and mounted on
Polyethylene terephthalate (PET) slides. QCL-IR Imaging is performed and then the same sample is immunohistochemically stained for Aβ and
scanned in a light microscope. B Computer-based phase: Precise alignment of IHC images onto the QCL-IR coordinate system. Regions of interest
(ROIs) of size 64 × 64 pixels were selected. Binary masks were generated from the corresponding IHC ROIs. The dataset was divided at case level to
train a weakly supervised neural network called Comparative Segmentation Network (CompSegNet) on binary image labels.
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generalized and stable model. A random selection of activation maps of test ROIs is shown in Fig. 4E. Blue background imply Aβ-free
samples and orange background Aβ-positive, respectively. In Aβ-free ROIs, only a minimal amount of activation was observed while in
plaque-containing ROIs, circular activation structures that are indicative for plaques can be found.

2.5. Strong alignment between the NN’s segmentation and the IHC staining

The segmentation results on whole-slide images (WSI) with Aβ-plaque pathology is presented in Fig. 5. Fig. 5A shows the overlay of
a whole-slide segmentation of a test case with boundary tracing (red) and the corresponding IHC image. The plaque segmentation in
two adjacent sections is illustrated by comparing the activation maps of plaque-rich gray matter and white matter without plaques. A
magnification of a selected region in which plaques are present is visualized in 5D and the corresponding area of the activation map in
5B. Regions with brighter white pixels indicate plaques, while regions with darker pixels suggest a lower likelihood of plaque presence.
The activation map reveals that denser Aβ plaques, which appear darker in the IHC, were more consistently recognized by the network
compared to the lighter structures (Supplementary Fig. S3). Additionally, the activation map exhibited predominantly round shapes
that closely resembled the shape of the Aβ plaques in the IHC. In addition, spectral differences were examined between the Aβ-positive
pixels detected by the network and the background with little to no activation (Fig. 5F and G), to gain further insights into the net-
work’s performance in identifying Aβ plaques. Therefore, the activation map of two different areas were colorized depending on their
activation level (H,I) and the corresponding spectra of each colored area were averaged and plotted in 5J. Subtle spectral differences
between the activation of the dense core plaque (H, olive) and its surroundings (H, blue) can be observed throughout the whole
spectral range, whereas spectral differences between the activation of a diffuse plaque (I, rose) and the background (I, green) can only
be found in the Amid I (1655 cm− 1) and II bands (1545 cm− 1). To facilitate comparison, a magnified view of an Aβ-free area is shown in
5E, alongside the corresponding activation map in 5C. Further evaluation of our model’s performance on the validation and test
datasets is available in the Supplementary Figs. S3 and S4. These Figures contain activation maps segmented by case, facilitating an in-

Fig. 3. Overview of the Comparative Segmentation Network (CompSegNet) and the training process.
A The network is trained on pairs of infrared (IR) regions of interest (ROIs) and binary image labels. ROIs can be amyloid-beta (Aβ)-free (y = 0) or
contain plaques (y = 1). B CompSegNet consists of a depth-reduced U-Net with an adapted input layer of size 64 × 64 × 427, yielding a 64 × 64 × 1
activation map which is connected to a pooling neuron q. The transfer function will maximize activation in Aβ-positive ROIs and minimize acti-
vation in Aβ-free areas.
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depth analysis of the model’s behavior across different subjects. Notably, in Fig. 5D and Supplementary Fig. S4, the network more
frequently detects plaques with more intense IHC staining, compared to more diffuse structures which appear lighter and amorphous in
the IHC ROIs.

2.6. The label-free plaque detection is robust and enables the precise extraction of plaques

To quantify the segmentation performance of the NN, whole-slide activation maps were compared to their corresponding IHC
images, as illustrated in Fig. 6A. The NN processes whole-slide QCL-IR images (6A1) into activation maps (6A2) that are binarized
(6A3) and compared to the corresponding IHC images (6A4 to 6A7). The precision of segmentation is determined by pixel-by-pixel
comparison of the resulting binary images. This procedure was performed on samples from all AD cases (n = 3) in the test dataset.
The calculated precision of 57 ± 7 % depicts the proportion of actual plaque area (green) within the predicted plaque area (red), as
depicted in Fig. 6A4. Fig. 6A8 displays the average plaque prevalence (plaque area per sample area) in the test samples at 2 ± 1 %. In
contrast, the NN precision (true positive area per positive area) is 57 ± 7 %. The ratio between NN precision and prevalence is defined
here as the purification factor PF, which indicates the factor by which plaques can be purified, relative to a homogenized tissue section.
The average purification factor is 32 ± 17.

The plaque detection in QCL-IR images is used to extract plaques from unstained adjacent tissue sections, as depicted in Fig. 6B.
First, a scanned QCL-IR image of a section (6B1) is processed into a whole-slide activation map (6B2), which is used to segment
predicted plaques (6B3). The sample and the shape coordinates are transferred to an LMD microscope. There, the plaques are extracted
and collected in buffer drops in tube lids (6B4). This way, several hundred label-free plaques, equivalent to 106 μm2 tissue area, were
extracted from each section.

Fig. 4. Overview of training and evaluating CompSegNet trained on infrared ROIs.
A Loss curves are shown in gray for training data and in magenta for validation data over 300 epochs. B Accuracy curves during training. C
Comparison of receiver operating characteristic (ROC) curves for validation (magenta) and testing data (green). D Statistical metrics for the selected
model from the 162nd epoch. E Random selection of activation maps of Aβ-free (blue) and Aβ-positive (orange) testing data.
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2.7. IHC alters the proteome of Aβ plaques

The proteome of Aβ plaques is essential for understanding the role of plaques in AD pathogenesis and can be used to screen for
potential biomarkers [41]. We compare the proteome of plaques from unstained tissue sections (label-free) with plaques from anti-Aβ
IHC stained adjacent sections (post-IHC), as shown in Fig. 7A. In both cases plaques were extracted according to QCL-IR-based CNN
predictions, ensuring highly comparable samples. This was done for sequential tissue sections of the three AD cases in the hold-out test
group, described in Section 2.4. The extracted plaques, both label-free and post-IHC, were investigated with bottom-up proteomics
[42]. 1856 proteins were present in both groups with comparable abundances (Supplementary Fig. S5), including well-known plaque
proteins as Aβ, tau and proteins of the complement system. 272 proteins were found exclusively in label-free plaques, including various
lysosomal proteins, whereas post-IHC plaques contained only 41 exclusive proteins (Fig. 7A, Supplementary Fig. S6A, Supplementary
Table ST1). Further, we found that fold changes of protein abundance displayed a wider dynamic range in label-free plaques than in
post-IHC, with the highest fold change being 393-fold for brain acid soluble protein 1 (BASP1), as seen in Fig. 7B. In contrast, the fold
changes in post-IHC plaques only reach up to 2.4, emphasizing the benefit of label-free extraction for proteomic analysis. We hy-
pothesized that especially highly soluble proteins would be lost during IHC. Indeed, we found that the proteins with higher abundances
in label-free plaques are significantly more soluble than those which are higher abundant in post-IHC plaques, as shown in Fig. 7C.

3. Discussion

Label-free imaging techniques, such as IR and Raman imaging, have been used by various research groups to study the composition
of plaques [27–30,44–48]. Further, the autofluorescent properties of plaques were studied by several groups [49–52]. Lochocki and
Ettema et al. found that autofluorescence, combined with the Raman signature of β-sheets and carotenoids, are markers of cored
plaques [53–55]. However, they state that these markers only identified a subset of plaques with very high levels of amyloid, limiting
the use of these markers for label-free plaque detection.

In addition to these findings, research has shown significant variability in the spectral characteristics of plaques. Confer et al.
demonstrated that even morphologically similar plaques exhibit pronounced spectral variability, particularly in their secondary
structure and phospholipid content [31]. Similarly, Holcombe et al. (2023) highlighted plaque-to-plaque variability in the β-sheet
structures within cored plaques, finding both parallel and antiparallel β-sheets, with some plaques lacking the distinctive spectral
features from their surroundings [32]. This underscores that using the entire spectrum is crucial for accurately distinguishing Aβ
plaques from adjacent tissue, as focusing solely on protein bands may not capture the full range of chemical differences necessary for
effective identification. At the same time, the spectral differences have a spatial-morphological component, as plaques are local ac-
cumulations that exhibit the relative spectral differences to the surrounding tissue. This underlines the importance of utilizing con-
volutional neural networks, which can learn such combinations of spectral and spatial alterations. Our work involves spectra from
overall sixteen AD patients, and thus provides a more general picture of the spectral and spatial alterations that characterize Aβ plaques
than previous contributions which involved much smaller patient numbers. To capture the heterogeneity across patients, our work
involves a convolutional neural network, which can capture the spatial accumulations of spectral changes.

In contrast, the approach presented in this study represents the first successful label-free detection of plaques by leveraging the
potential of deep learning, providing a promising alternative to label-based methods like IHC. The performance of our label-free
approach was evaluated by the comparison to anti-Aβ IHC staining on the same tissue section which is currently considered the
gold standard for plaque detection in neuropathology. Our classification results per image patch demonstrated high accuracy and
sensitivity on the validation and hold-out test samples (Fig. 4) The segmentation results revealed the effective identification of plaques
by our method and showcased its ability to successfully detect Aβ-plaques at pixel-level precision of 57 %. Thus, closely approximating
the IHC gold standard and allowing to purify plaques 32-fold using NN-guided LMD. These evaluation metrics collectively demonstrate
the effectiveness and reliability of our label-free plaque detection approach.

The label-free approach holds great promises for plaque detection in AD research. By overcoming the need for

Table 1
Details on group demographics, neuropathological staging and dataset compositions. Neuropathological scoring for Aβ deposits (A) and neurofi-
brillary tangles (B) [65]. Abbreviations: AD Alzheimer’s disease, HC healthy control, m male, f female, ROI region of interest.

Training (n = 10) Validation (n = 5) Testing (n = 4)
∑

(n = 19)

AD HC AD HC AD HC AD HC All

Cases 9 1 4 1 3 1 16 3 19
sex (m/f) 6/3 0/1 1/3 1/0 2/1 0/1 9/7 1/2 10/9
age at death (mean ± SD) 71 ± 15 78 73 ± 10 83 78 ± 9 102 73 ± 13 88 ± 10 75 ± 14
A (amyloid) n per stage 0/1/2/3 0/0/0/9 0/1/0/0 0/0/0/4 0/1/0/0 0/0/0/3 0/1/0/0 0/0/0/16 0/3/0/0 0/3/0/16
B (tau) n per stage 0/1/2/3 0/0/2/7 0/1/0/0 0/0/0/4 0/1/0/0 0/0/0/3 0/1/0/0 0/0/2/14 0/3/0/0 0/3/2/14
Samples 44 2 13 2 3 1 60 5 65
- temporal lobe 11 – 6 – 2 1 19 1 20
- frontal lobe 18 – – – 1 – 19 0 19
- parietal lobe 15 2 7 2 – – 22 4 26
ROIs Aβ-positive 4702 – 1241 – 372 – 6315 – 6315
Aβ-free 3410 1292 886 355 181 191 4477 1838 6315
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immunohistochemical markers, this method provides a valuable tool for analyzing plaques and opens avenues for investigating the
molecular composition of unaltered plaques. However, it is crucial to acknowledge the limitations and biases associated with the
neural network approach. Firstly, the spatial pixel resolution of IR imaging is limited to above 5 μm within the relevant spectral region.
This resolution may not be sufficient to resolve small plaques, resulting in their absence in the plaque extracts generated by the
method. Secondly, the NN demonstrates a higher reliability in detecting dense plaques compared to diffuse plaques. Consequently, the
composition of the plaque extracts may exhibit disproportionate amounts of classic cored and compact plaques in relation to diffuse
plaques. Thirdly, the NN does not fully replicate the results of anti-Aβ IHC at pixel level, which is currently considered the gold
standard for plaque detection in neuropathology. This impedes a direct comparison between the results obtained from label-free
extraction and label-based extraction techniques.

Another important aspect that has to be considered when analyzing the segmentation results from our NN is the presence of non-Aβ
protein aggregates and the potential for false-positive. Following the spectral acquisition, samples were stained against Aβ, and binary
masks were created based on the IHC results. The loss function of CompSegNets utilizes these masks and guides the learning process to
implicitly identify differences between Aβ-free and Aβ plaque areas through their spectral and morphological characteristics, although
the precise mechanisms by which these differentiations occur are not yet fully understood.

The aim of this study is to generate an assay for label-free plaque identification and subsequent chemically unimpeded molecular
analysis within a specific set of samples. The model’s scientific relevance lies in generating hypotheses about plaque formation
mechanisms and an unbiased understanding of plaque characteristics that find support in downstream studies. Therefore, the seg-
mentation performance of the NN on the used cohort (N = 19 cases) takes precedence over generalizing the model to other cohorts. In
this context, the need for the model to perform reliably across varying trials and in an everyday medical care setting is less critical, as
our focus lies on the possibilities of this workflow. While the performance of our NN on samples from different origins or in other
laboratories remains uncertain, experiences from multi-centric studies in histopathology clearly suggest that the models described here
would require a certain amount of retraining to adjust to data from a different cohort or a different laboratory [56].

Explainability is a crucial factor to consider in our study. While we successfully utilized deep learning methods for label-free plaque

Fig. 5. Results for whole-slide segmentation of model 162 on an hold-out test sample.
A Overlay of the immunohistochemistry image and segmentation output with boundary tracing in red. B/C Output activation maps of the U-Net of
area D and E. F and G show a second magnification of areas in B with several plaques. D/E Magnification of selected regions with (B) and without
(C) plaques. H/I Colored activation map; activation in olive (H) and rose (I), no activation in blue (H) and green (I). J Averaged infrared spectra
corresponding to their colorized activation map (H/J).
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detection, it is important to acknowledge that chemometrics are often the preferred method as NNs are perceived as “black box”
approaches, making it challenging to discern the knowledge acquired during training. To address the demand for interpretability in our
NN, approaches such as layer-wise relevance propagation [57,58] Grad-CAM [59] or saliency maps [60] are applicable methods in
identifying key input features and important wavenumbers that contribute to the decision-making process of the network. These
methods can significantly enhance our understanding of various factors and bridge the gap towards a more explainable approach in
future studies. However, the chemical signal in infrared spectra obtained from tissue samples is entangled with complex physical
effects on the spectrum, and it remains a major research challenge for the field to disentangle chemical information from complex
tissue spectra.

The proteomic data presented in our study provide first promising insights into the benefits that label-free plaque extraction
provides for proteomic studies. Although only a small cohort was used for proteomic experiments (n = 3), our results show that both
protein identification and quantification can be improved by avoiding IHC procedure. These observations need to be further verified
with a larger cohort but should nevertheless be considered in the context of the combination of IHC and proteomic investigations. In
addition, it might be possible to even further improve the identification and quantification of proteins from plaques by changing the
mass spectrometric measurement mode from data-dependent to data-independent acquisition, since this acquisition mode has recently
shown to be advantageous regarding protein identification and quantification [61,62].

Although further improvements are still possible, our relatively small dataset showed a high overlap with a previous study focusing
on plaque proteomics [63], because our dataset includes 186 of the 279 proteins reported as proteins commonly found in Aβ plaques
(Supplementary Fig. S6B). However, it should be noted that Drummond et al. used FFPE tissue with IHC, which is a more invasive
method than our IHC staining on fresh frozen tissue, potentially resulting in variations in protein yield due to the differing tissue
preparation methods. Additionally, while the availability of fresh frozen tissue is limited, FFPE tissue is far more challenging for sample
preparation and data analysis for proteomic studies due to protein cross-linking and altered antigenicity,

Fig. 6. Evaluation of the segmentation performance and subsequent label-free plaque extraction.
A The NN processes QCL-IR images of test case samples (A1) into activation maps (A2) that are binarized to segment predicted plaques (A3). IHC
images of the same section (A5 and A6) are binarized for comparison (A7). A4 Pixel-by-pixel comparison between the NN prediction (red) and IHC
(green) facilitates the calculation of the segmentation precision (A8). B An activation map is generated from a QCL-IR image of an adjacent section
(B1 and B2). The activation map is segmented to determine predicted plaques shapes (B3, orange). The shapes (B4) are extracted using laser
microdissection (LMD) and collected in buffer drops in tube lids.
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Future research endeavors should (i) prioritize the refinement of the technique employed in this study to enhance its spatial
resolution, (ii) broaden the sample size for both training and testing purpose and (iii) evaluate its performance across diverse sample
populations and different laboratory settings to contribute to its generalizability. Furthermore, exploring the utility of the technique in
animal models of AD will offer valuable insights into its effectiveness and potential limitations. A meaningful application of our
technique is the investigation of Aβ oligomers in the AD brain, which presents significant challenges, as these oligomers are considered
transient and unstable polymorphs that are highly susceptible to their surrounding conditions [64].

In conclusion, the successful implementation of label-free plaque detection using a NN represents a significant breakthrough in the
research field of Aβ plaques. To the best of the authors’ knowledge, this is the first time such a method has been successfully employed.
The label-free detection and extraction of plaques from tissue thin sections using QCL-IR imaging, a NN, and LMD provide a funda-
mentally novel tool for plaque analysis that we demonstrated to provide a significant benefit. This approach enables the extraction of
plaques in their chemically native state without the need of IHC staining potentially altering the plaque proteome, thus allowing for a
wide range of analytical methods to be applied to these previously inaccessible samples, opening new possibilities for studying the
nature of plaques, particularly their transient constituents. This brings us closer to the in vivo state of plaques, offering a more reliable
and unbiased understanding of plaque characteristics that can contribute to advancing our knowledge of this devastating condition.
The insights gained from these studies may aid in the development of more effective diagnostic and therapeutic strategies for AD.

Fig. 7. Comparing the proteome of label-free and post-IHC Aβ plaques.
A Plaques were extracted using laser microdissection (LMD) according to quantum cascade laser infrared (QCL-IR) imaging and neural network
plaque detection. Tissue samples from AD test cases (n = 3) either remained label-free (N = 3) or were extracted after immunohistochemical staining
(post-IHC; N = 3). Our complete dataset comprises 2168 proteins, of which 1856 proteins (gray) were identified in both groups. Label-free plaques
yielded higher numbers of exclusively identified proteins (272, yellow) than post-IHC plaques (41, red). B Of 906 proteins matching criteria for
quantitative comparison, 102 proteins were significantly higher abundant in label-free samples (yellow), while 73 proteins were significantly higher
abundant in post-IHC samples (red). C Protein solubilities scores [43] were significantly different between the three abundance groups (***:
p-value <0.001).
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4. Materials and methods

Case selection. AD cases (n = 16) were selected when clinical and neuropathological information fulfilled the criteria of the
National Institute on Aging-Alzheimer’s Association (NIA-AA) for AD [65]. We selected AD cases with the intention to cover a wide
variety of Aβ deposits. This is a crucial prerequisite for a generalizing classifier, which recognizes the universal features of Aβ plaques.
Further, we selected both female (n = 9) and male cases (n = 7) with vastly different ages at death, ranging from 37 to 92 years. We
selected tissue from three regions of the neocortex, the frontal lobe, the temporal lobe, and the parietal lobe. Some cases displayed
vascular Aβ deposits, referred to as cerebral amyloid angiopathy (CAA), which was not included in our data selection routine. Some AD
cases displayed atypical Aβ deposits, such as cotton-wool plaques (n = 2) and coarse-grained plaques (n = 3). These atypical plaques
feature a notably different morphology than classic Aβ plaques and are therefore a valuable addition to our dataset [36]. Control cases
(n = 3) were selected when no cognitive decline was reported during life and AD pathology was absent or ‘low’ according to the
NIA-AA criteria [65]. For details see (Table 1).
Post-mortem human brain tissue. Post-mortem brain tissue was selected from the Netherlands Brain Bank (the NBB; Amsterdam,

The Netherlands). Donors or their next of kin signed informed consent for the usage of brain tissue and clinical information for research
purposes. The Institutional Review Board and Medical Ethical Board from the Vrije University Medical Center approved the procedures
of the NBB. Neuropathological diagnosis was performed (by A.J.M.R) and was based on multiple (immuno)histochemical staining of
diversified brain regions according to the standard operating procedures of the NBB and BrainNet Europe consortium. Snap-frozen
tissue sections (10 μm) were mounted on PET frame slides (Leica) for vibrational imaging and subsequent Aβ-IHC. Tissue sections
were stored at − 80 ◦C prior to experiments to reduce sample degradation [27].
Quantum cascade laser infrared imaging (QCL-IR). IR imaging is a label-free method for obtaining microscopic spectral images

of tissue sections. IR spectra are a molecular fingerprint composed of a multitude of vibrational bands, containing chemical infor-
mation [7,66]. We used the quantum cascade laser (QCL) microspectrometer Spero-QT 340 and Chemical Vision software version 3.2
(Daylight Solutions, San Diego, USA). The instrument covers a spectral range from 1800 cm− 1 to 948 cm− 1 with a spectral resolution of
2 cm− 1. Using the 4× objective (0.3NA), a Field of View of 2 × 2 mm is projected onto a 480 × 480 pixel microbolometer focal plane
array (FPA) detector, resulting in an image with 4.25 × 4.25 μm pixel size. Before spectral measurements, tissue samples were thawed
in a container purged with dry air. The dried samples were then placed in the cavity of the Spero-QT. The instrument was continuously
purged with dry air during measurements.
Immunohistochemical staining against Aβ (anti-Aβ IHC). Following spectral measurements, sections were fixated in ethanol for

10 min and blocked for endogenous peroxidase using 0.3 % H2O2 for 5 min. After washing (3 × 3 minutes in PBS (Thermo Fisher)), the
sample was incubated with the primary antibody mouse-anti-Aβ directed against aa1-16 (clone IC16, Müller-Schiffmann [67])
overnight. After washing (3 × 3 minutes in PBS), the sample was incubated with Envision (Agilent Dako) for 1 h at room temperature
and washed. Color development was done using 3,3′ Diaminobenzidine (Agilent Dako), following the manufacturer’s instructions. The
sections were counter-stained with 1 % Cresyl-Violet in 50 % ethanol. Finally, the sections were dehydrated in an ethanol series
(70%-96%–100 %), mounted with Euporal (Roth) and coverslipped. The stained sample was subsequently imaged with an Olympus
BX61VS slide scanner, using the UPlanSApo 20×0.75 NA objective (Olympus).
Image alignment and data selection. In order to use anti-Aβ IHC images as ground truth of our dataset, they were precisely

overlaid with QCL-IR images of the identical section. We applied a homemade software (written in Matlab) that warps the anti-Aβ IHC
image onto the QCL-IR image, as previously described [7]. Subsequent to image registration, ROIs were manually selected, using a
home made software, written in Matlab. ROIs are of size 272 × 272 μm, corresponding to 64 × 64 QCL-IR pixels. Aβ-positive ROIs
contain at least 5 % of Aβ-positive area. Aβ-free ROIs were collected in the gray and white matter of AD cases, as well as healthy control
cases. Additionally, ROIs were selected in tissue folds, dirt, edges of tissue and holes in the sample in order to represent a variety of
different tissue structures.
Data preprocessing. For every ROI, a binary mask was calculated so that Aβ-positive pixels and their direct neighbors are rep-

resented as 1 and the surrounding areas as 0. In the absence of any Aβ deposits, a pixel value of 1 was assigned to the entire ROI to
prevent divisions by zero and a vanishing gradient in the training process. The mask calculation was performed by using the blue color
channel of the IHC images and adjusting the contrast such that the intensity values between 0.3 and 0.9 are mapped to a new lower and
upper bound of 0 and 1. Values below or above the thresholds were clipped. Afterwards, the images were binarized using Otsu’s
method [68] and holes were filled. Connected components smaller than 542 μm2 (<30 QCL-IR pixel) were removed and binary objects
were smoothed by a morphological opening. As a final step, ROIs were dilated with a 3 × 3 white kernel and 4 iterations, so that the
pixels surrounding Aβ-structures are set to 1. All operations were performed using the image processing toolbox in Matlab (Matlab
Image Processing Toolbox).
Dataset: The final dataset comprises 19 cases with a total of 12,630 ROIs, see Table 1. Training, validation and testing datasets

were divided in a 10/5/4 split with an equal distribution of Aβ-positive and Aβ-free tissue tiles in each group. Training and validation
data was used in the training process of the neural network while the testing data was utilized for independent evaluation. All
measurements were strictly divided at case level such that data of the same case can only be found in one group.

4.1. Comparative Segmentation Network

To detect plaque related tissue structures, we trained a Comparative Segmentation Network (CompSegNet) [34] using the
hyperspectral dataset described in Fig. 1. CompSegNet is a weakly supervised neural network that overcomes the need for pixel-precise
annotation and only relies on image labels. The topology of the network is an extended U-Net [40] and follows the encoder-decoder
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structure (Fig. 3B). In the contracting path, an input image of size 64 × 64 × 427 is passed through a series of convolutional and
max-pooling layers that reduces the spatial resolution while increasing the number of feature maps to a size of 8 × 8 × 512. Through a
sequence of transposed convolutions, the spatial resolution is increased while the feature maps are reduced to match the number of
output channels in the final layer. Encoder and decoder are connected through skip-connections to retain details of the input image.
U-Net’s output layer yields a bounded activation map within the interval [0,1] of the same spatial dimensions as the input image (64 ×

64 × 1). The activation of each sample is then weighted by the corresponding binary mask, and averaged in a pooling neuron q,
resulting in a ratio of associated Aβ activation within specific tissue areas. The percentage of activation is regulated by a transfer
function, so that the activation for Aβ positive samples fall within a range of α and α+β and is minimized for control samples. An upper
threshold is needed to prevent overdetection and ensure that only a fraction of the binary mask is activated. The overall loss is
calculated by a cross entropy with class weighting on the output of the pooling neuron and an additional cross entropy that evaluates
the activation pixel of the masked out Aβ-positive ROI and the ones that are fully Aβ-free (Further details in Schuhmacher et al., Section
2.3).

CompSegNet was trained on hyperspectral data for 500 epochs with an initial learning rate of 5 ⋅10− 4, a decay of 0.9 every 50
epochs and early stopping as a regularizer, which stopped the training after 300 epochs. It was initialized with a lower bound of 5 % (α
= .05) and an upper bound of 80 % (α + β = 0.8). We used a batch-size of 20 and RMSprop as the optimizer. To increase the size of the
dataset, data augmentation strategies such as random rotation in steps of 90◦, horizontal and vertical flipping were applied during
training.

4.2. Model selection and evaluation

After training CompSegNet, a classification approach is utilized to evaluate each model on the validation dataset. Therefore, the
averaged activation of the pooling neuron q is used to determine a predicted label for each ROI. If the relative amount of activation falls
between the lower α and upper α + β bounds, the ROI is labeled as 1, and 0 otherwise. Metric values for each model were calculated and
the model yielding the highest specificity values was chosen.

4.3. Whole-slide image segmentation

The QCL-IR image underwent a tile-based approach in which a sliding window of a fixed dimension of 64 × 64 pixel is moved across
the image to extract tiles of the same size as the window. To ensure continuity of information across adjacent tiles, we created
overlapping tiles of 16 pixels which are also assessed by the neural network. The resulting outputs are reassembled by selecting the
maximum value of overlapping regions to form a WSI activation map.

4.4. Evaluation of segmentation performance

An ideal NN would generate an activation map that is identical to the corresponding binary IHC-mask of each QCL-IR ROI input. In
other words, Aβ-positive pixels are 1 and Aβ-negative pixels are 0. In practice, the activation map spans values ranging from 0 to 1. In a
well-trained NN, high values colocalize with Aβ-positive pixels, while low values colocalize with Aβ-negative pixels. We evaluate the
NN’s ability to segment plaques in QCL-IR images. Therefore, we quantify the segmentation accuracy in QCL-IR images from test cases.
The generated activation maps are binarized and compared to the corresponding binary IHC-mask. The comparison is performed pixel
by pixel, with each pixel classified as either true positive (TP), false positive (FP), true negative (TN), or false negative (FN). Relevant
metrics include the precision, also called Positive Predictive Value (PPV)

PPV=
TP
PP

=
TP

TP+ FP
,

where Predicted Positives (PP) is the sum of all positively predicted pixels. The precision, in terms of application, expresses the
proportion of truly Aβ-positive tissue in a plaque extraction. To put the precision into perspective, we consider the proportion of Aβ-
positive area in a tissue section. This metric is known as prevalence (PR), and it is defined as

PR=
P

P+ N
=

TP+ FN
TP+ FP+ TN+ FN

,

where Positives (P) and Negatives (N) denote the sum of actually positive/negative pixels. In terms of application, the prevalence
expresses the proportion of Aβ-positive tissue in a random tissue extraction. The ratio of the two ratios explained above is a useful
metric which we will refer to as purification factor (PF)

PF=
PPV
PR

.

4.5. Plaque extraction via laser microdissection (LMD)

Laser microdissection (LMD) uses an ultraviolet laser to extract microscopic regions from a tissue section. Here it is used to extract
plaques from brain tissue sections. The workflow is based on a previously described method [16,19]. QCL-IR images of brain tissue
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sections were measured using a Spero-QT as described above. The spectral data was subsequently processed by the CNN. Here, we use
the activation map, the direct output of the CNN, as an indicator for plaques. “Plaque masks” were generated by binarizing the
activation maps with a fixed threshold of 0.9 in a range of 0–1. Thereupon, the following morphological operations were applied in
sequence: exclude objects with size <100 μm̂2, dilate by 15 μm, fill holes, erode by 10 μm, exclude objects with size <300 μm̂2,
eccentricity <0.97, or solidity >0.7. The morphological processing and the coordinate transformation was performed in MATLAB. The
resulting masks have reasonably plaque-like shapes and include a 5 μm margin to compensate for tissue loss during the LMD procedure.
Damaged tissue regions were excluded manually. The sample was transferred to an LMD microscope (PALM MicroBeam; Zeiss, Jena,
Germany). Based on three reference points in each microscopy image, a two-dimensional Helmert transformation was used to transfer
coordinates of the detected plaque shapes. The PALM Robo software version 4.6 was used to import the plaque shape coordinates and
cut the shapes using the instrument’s 5× objective. The tissue was collected in dH2O and stored at 80 ◦C until analysis.

4.6. Sample preparation for proteomic analysis

Sample preparation was performed as previously reported [42]. In brief, samples were lysed in formic acid (FA) and sonicated.
After evaporation (Concentrator plus; Eppendorf, Hamburg, Germany), an in-solution digestion with trypsin was performed after
reduction and alkylation. The digestion was stopped by adding trifluoroacetic acid (TFA), and after another evaporation step, peptides
were stored in 0.1 % TFA at − 80 ◦C.

4.7. Mass spectrometric analysis

Liquid chromatography (LC) and mass spectrometry (MS) were carried out as described [69]. Briefly, an Ultimate 3000 RSLC nano
LC system (Dionex, Idstein, Germany) coupled to an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific) were
used for the experiments. Peptides were separated at a flow rate of 400 nL/min with a linear gradient of increasing percentages of
solution B (84 % acetonitrile, 0.1 % FA), starting at 5 % and increasing up to 30 % B at 105 min. The mass spectrometer operated in
data-dependent acquisition mode, selecting all precursor ions with an intensity above 1 × 104 for fragmentation at a fixed collision
energy of 28 %. Precursor ions selected for fragmentation were maintained on a dynamic exclusion list for 30 s. The mass spectrometric
data is available at the ProteomeXchange Consortium via the PRIDE partner repository [70] using the identifier PXD045130.

4.8. Analysis of proteomic data

Data obtained by MS were analyzed using MaxQuant [71] version: 2.0.3.0, with label free quantification (LFQ) and intensity-based
absolute quantification activated. Trypsin was selected as the protease and a maximum of two missed cleavages were allowed. Ob-
tained spectra were compared against a contaminant database and a homo sapiens reference proteome (January 2022) obtained from
Uniprot [72]. The false discovery rate was set to 1 % and determined using a reverse-decoy database obtained from MaxQuant.
Oxidation of methionine, carbamidomethylation of the N-terminus, deamidation of asparagine and glutamine and formylation of
lysine were chosen as the dynamic modification, while carbamidomethylation of cysteine was used as the static modification. The
obtained data from MaxQuant were subsequently analyzed with Perseus [73] by first filtering out decoys and contaminations and
transforming the LFQ values (log2(x)). For further analysis, only proteins which could be identified in two of the three samples in each
sample group were considered. Missing values were imputed using a normal distribution. A two-tailed Student’s T-test was used to
determine the significantly different proteins. Proteins with a p-value <0.05 were considered as significantly changed. Those proteins
were divided into three groups (higher abundant post-IHC, not changed in abundance, higher abundant label-free) and solubility
scores were calculated for each protein using Protein-Sol [43]. Solubility scores were tested for significant differences between two
groups using a two-tailed Student’s T-test. BoxPlot R [74] was used for the visualization of solubility scores.
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