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Abstract

A label-free approach based on a highly reproducible and stable workflow allows for quantitative proteome
analysis. Due to advantages compared to labeling methods, the label-free approach has the potential to
measure unlimited samples from clinical specimen monitoring and comparing thousands of proteins. The
presented label-free workflow includes a new sample preparation technique depending on automatic
annotation and tissue isolation via FTIR-guided laser microdissection, in-solution digestion, LC-MS/MS
analyses, data evaluation by means of Proteome Discoverer and Progenesis software, and verification of
differential proteins. We successfully applied this workflow in a proteomics study analyzing human cystitis
and high-grade urothelial carcinoma tissue regarding the identification of a diagnostic tissue biomarker.
The differential analysis of only 1 mm? of isolated tissue cells led to 74 significantly differentially abundant
proteins.

Key words Label-free proteomics, FTIR imaging, Laser microdissection, Urothelial cell carcinoma
(UCC), Bladder cancer, AHNAK2

1 Introduction

Label-free mass spectrometry (see also Chaps. 8, 16, 21-24), as the
name implies, does not use any labeling strategies, making it very
cost-eftective, but only quantifies by matching identical peptides
over several runs. Advantages beside cost-effectiveness and less
sample preparation steps are high proteome coverage and high
dynamic range. The disadvantages here are, therefore, high mea-
surement times, as each sample or condition has to be measured
separately and, furthermore, the separate handling of each sample
from acquisition to measurement [1, 2].

In label-free proteomics, there are mainly two approaches of
protein quantification, which are spectral counting and ion inten-
sity-based quantification. While in spectral counting, as the name
implies, the number of MS/MS fragment ion spectra that were
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obtained for the peptides of a protein are counted and compared,
the second type of label-free quantification measures the chro-
matographic peak areas of peptide precursor ions. Both strategies
are possible, as both the number of MS/MS spectra of a peptide
increase with the amount of the corresponding protein [3] and the
areas under the curves (AUC) of chromatographic peptide peaks
correlate linearly with the corresponding protein abundance [4, 5].

Nowadays, the main approach of protein quantification is ion
intensity-based quantification as it relies on measuring physical data
and not simply on counting the acquired spectra. In this approach,
raw MS data have to be further processed for analysis. This includes,
for example, feature detection, retention time alignment, intensity
normalization, and peak picking [4].

The sample preparation is one very important step in proteo-
mics for obtaining high-class quantification results. Especially in
tissue proteomics, the right sample preparation is crucial due to
tissue heterogeneity [6]. Here, a new strategy for automated anno-
tation and isolation of regions of interest (ROI) has been used [7-
9]. Conventionally, histological stainings or pathological annota-
tions are necessary to detect ROIs in tissue samples, which are then
transferred to unstained adjacent sections for LCM. The transmis-
sion of ROIs to adjacent slides, though, implies insurmountable
deviations to annotated ROIs. The novel strategy of label-free
automated tissue annotation and subsequent isolation via FTIR
(Fourier transform infrared)-guided laser capture microdissection
was coupled to subsequent label-free LC-MS/MS proteome analy-
sis. By combining these techniques, very homogeneous samples can
be obtained that are very accurately annotated, as the same tissue
section annotated via FTIR imaging can be used for proteome
analysis [10].

In label-free proteomics, the reproducibility and stability of the
workflow are of highest importance due to the high sample com-
plexity and separate measurements for each sample. Therefore, all
steps of the label-free approach have to be optimized for best
results, which includes the before-mentioned sample preparation
with protein extraction and digestion, peptide separation by liquid
chromatography, and data analysis including identification, quanti-
fication, and statistical analysis. One major advantage of label-free
proteomics is its compatibility with high-throughput analyses that
allow for processing of large numbers of biological samples
required for statistically significant quantification.

We describe the application of a label-free approach for the
identification of biomarker candidate proteins in the context of
urothelial carcinoma diagnosis. We used fresh-frozen human tissue
of patients with an inflaimmation of the bladder (cystitis) in
comparison with high-grade urothelial carcinoma and performed
label-free tissue annotation via FTIR (Fourier transform infrared)
imaging with guided automated laser microdissection for unbiased
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Fig. 1 Workflow of the label-free proteomics approach coupled with FTIR-guided LCM. First the tissue is
annotated label-free and regions of interest isolated. After isolation, proteins will be extracted and digested
with trypsin. Peptides will be analyzed via LC-MS/MS and generated data evaluated with Proteome Discoverer
for identification and Progenesis QI for quantification. For verification of biomarker candidate proteins,
immunohistochemistry will be performed

isolation of the tissue sections of interest only and subsequent label-
free LC-MS/MS proteome analysis. For that, we used nano-HPLC
coupled to an Orbitrap Elite mass spectrometer for the generation
of peptide profiles. For quantitative analysis of the data, the soft-
ware Progenesis QI for proteomics was used. Altogether, 74 pro-
teins were found to show significant differential abundance
between the analyzed groups (FDR-adjusted p-value <0.05 and
absolute fold change >1.5). Verification was performed in two
steps with increasing cohort sizes and the addition of more urothe-
lial carcinoma groups (low grade and carcinoma in situ). From
three tested candidates in the first step, AHNAK2 was selected for
turther verification and proposed as a biomarker candidate for the
differentiation between cystitis and several subgroups of urothelial
carcinoma (Fig. 1).

2 Materials

2.1 FTIR Imaging
and Laser
Microdissection

1. HM550 cryostat (Thermo Fisher Scientific, Waltham,
MA, USA).

2. PET (polyethylene terephthalate) frame slides (Leica, Wetzlar,
Germany).

3. Cary 620 IR microscope equipped with a 128 x 128 pixel
liquid nitrogen-cooled mercury cadmium telluride (MCT)
focal plane array (FPA) (Agilent Technologies, Santa Clara,
CA, USA).
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4. Cary 670 spectrometer (Agilent Technologies, Santa Clara,
CA, USA).

5. Parker Balston AirDryer Assembly 75-62 (Parker Hannifin
Corporation, Lancaster, NY, USA).

6. PALM Microbeam Laser microdissection (LMD) microscope
(Carl Zeiss Microscopy GmbH, Jena, Germany).

7. MATLAB (MathWorks, Natick, MA, USA) or equivalent (e.g.,
R or Python).

2.2 Sample 1. Ultrasonic bath (VWR, Darmstadt, Germany).

Preparation 2. Centrifuge (Eppendorf, Hamburg, Germany).

and Digestion 3. Lysis buffer: 50 mM ammonium bicarbonate with 0.1% Rapi-

Gest SF surfactant (Waters GmbH, Eschborn, Germany).

4. Digestion: 20 mM dithiothreitol (DTT), 100 mM iodoaceta-
mide (IAA), 33 ng/pL trypsin, trifluoroacetic acid (TFA).

2.3 Liquid 1. Ultimate 3000 RSLCnano high-performance liquid chroma-
Chromatography tography system (Dionex, Idstein, Germany).

2. Trap column: Acclaim PepMapl00 C18 Nano-Trap column
(C18, 100 pm x 2 cm, particle size 5 pm, pore size 100 A;
Thermo Fisher Scientific, Bremen, Germany).

3. Nano column: Acclaim PepMap RSLC Nano Viper C18 ana-
lytical column (C18, 75 pm x 50 cm, particle size 2 pm, pore
size 100 A; Thermo Fisher Scientific).

4. Loading solvent: 0.1% (v/v) TEA (MS grade).
Gradient solvent A: 0.1% (v/v) Formic acid (FA) (MS grade).

6. Gradient solvent B: 0.1% (v/v) FA (MS grade), 84% (v/v)
acetonitrile (ACN) (MS grade).

92

2.4 Mass 1. LTQ Orbitrap Elite with an online nano-ESI source (Thermo
Spectrometry Fisher Scientific).

2. Pico Tip " emitter Silica Tip " (New Objective, Woburn, USA).

3. Collision gas: nitrogen.

—

. Proteome Discoverer v.1.4 (Thermo Fisher Scientific).
2. Mascot v.2.5 (Matrix Science, London, UK).

3. Progenesis QI v.2.0 (Nonlinear Dynamics, Durham,
NC, USA).

4. Rv.3.4.0 (Free Software Foundation).

2.5 Data Analysis
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3 Methods

3.1 General Practice

3.2 Automatic
Annotation Via FTIR
Imaging and Laser
Microdissection

Human tissue of patients with an inflammation of the bladder
(cystitis) or high-grade UCC was collected during cystectomy sur-
gery according to standard operation procedure. Tissue was washed
with isotonic saline solution, slowly frozen on the surface of liquid
nitrogen within 8 min and stored at —80 °C. Frozen tissue was
sectioned with an HM550 cryostat (Thermo Fisher Scientific, Wal-
tham, MA) at —20 °C, and 10 pm sections were collected on
polyethylene terephthalate (PET) frame slides.

1.

Take the tissue thin section mounted on a PET frame slide and
place it under the FTIR imaging microscope (here Cary 620)
(see also Note 1).

. Thaw the tissue sample under dry air in the FTIR system. At

the same time, the system is stabilized with the dry air.

Select a clean background position on the PET slide and collect
spatially resolved IR spectra in the wave number region
3700-950 cm ! at a spectral resolution of 4 cm™! with
co-added 128 scans. Use a 15x objective resulting in a pixel
resolution of ~5.5 um and a field of view (FOV) of 715 pm? per
FPA field.

. Select the region of interest (ROI) on the PET slide and collect

spatially resolved IR spectra in mapping mode. This allows
imaging of larger regions than the FOV by stitching the col-
lected FPA fields afterwards.

Stitch the collected spectral hypercubes in MATLAB
(or equivalent software) and pre-process the data. The first
step is a quality test based on the integral of the amide I band
and the signal-to-noise ratio (noise, 2100-2000 cm ™~ '; signal,
1600-1500 cm ™). Then subject all spectra to extended multi-
plicative scattering correction-based Mie and resonance-Mie

scattering correction from 2300 to 950 cm ™.

. The dataset is now prepared for multivariate data analysis or

machine learning algorithms. For bladder, pre-train and use a
random forest (RF) classifier to annotate the tissue (see also
Note 2).

. Select the ROIs from the label-free annotated IR image for

isolation via LMD.

. Select three reference points at the IR imaging system and then

transfer the tissue section to the LMD.

. Find the three selected reference points at the LMD. They are

needed for the coordinate transfer.
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10.

11.

3.3 Sample 1.
Preparation
and Enzymatic
Digestion
2
3
4
3.4 Peptide 1.
Separation

with Reversed Phase
High-Performance
Liquid
Chromatography

Transfer the coordinates of the ROIs selected from the FTIR
imaging results to LMD by two-dimensional Helmert trans-
formation based on three reference points in MATLAB or
equivalent software (see also Note 3).

Collect the needed tissue area. For bladder, 10 pm sections
were used, and regions of 1 mm? were collected in lysis buffer
(20 pL/1 mm? cells).

Lyse the cells in lysis buffer (20 pL/1 mm? cells) and sonicate
the samples upside down on ice for 1 min and finally centrifuge
the samples in the upright position for 1 min to transfer them
from the lid to the vial itself.

. Normally, it is necessary to know the concentration of the

samples. However, due to LCM isolation of only 1 mm? tissue,
digest all.

. Perform a tryptic in-solution digest for the proteolysis of pro-

teins. For reduction, add 3.7 pL DTT (20 mM) to the samples
and incubate for 30 min at 60 °C. Afterwards alkylate with
2.2 pL TAA (100 mM) for 30 min at room temperature in the
dark. Add trypsin (0.02 pg) to digest the proteins overnight
(max. 16 h) at 37 °C. Stop the digestion by adding 1.3 pL 10%
TFA to the solution, incubate for 30 min at 37 °C. Afterwards
centrifuge the samples (10 min, 16,000 x g) and transfer the
supernatant to a glass vial (se¢ Note 4).

. Before performing the LC-MS analysis, dry the samples in a

vacuum centrifuge and dissolve themin 17 pL. 0.1% TFA. Use a
sample amount of the whole 1 mm? tissue area for one
LC-MS/MS measurement (see Note 5).

For the separation of the digested proteins, perform a reversed
phase high-performance liquid chromatography with the Ulti-
mate 3000 RSLCnano high-performance liquid chromatogra-
phy system (Dionex). Within this, use a system containing a
nano-trap column (C18) and a nano-analytical column (C18).
The columns need to be heated to 60 °C to allow high flow
rates of 400 nL./min at acceptable pressure (see Note 6).

. Use a sample volume of 15 pL for injection. First, peptides are

pre-concentrated on the trap column for 7 min, while deter-
gents and salts are washed away. Use a flow rate of 30 pL/min
for loading.

. The gradient for peptide separation works as follows: (a) linear

gradient from 5 to 40% solvent B over 98 min, followed by
(b) 95% B in 2 min, (c) constant 95% B for 7 min, and finally
(d) 5 min at 5% B for equilibration. Set the gradient pump flow
rate to 400 nL/min.



3.5 Detection

of Separated Peptides
with Mass
Spectrometry

3.6 Identification
of Measured Proteins

3.7 Quantitative
Proteome Analysis
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. Operate the Orbitrap Elite” mass spectrometer (Thermo

Fisher Scientific) in the data-dependent mode to automatically
switch between MS and MS/MS acquisition.

. Set the mass range for survey full scan MS spectra and MS/MS

spectra to m/z 350-2000.

. For fragmentation, apply collision-induced dissociation (CID)

with nitrogen as collision gas and normalized collision energy
of 35. For MS/MS measurements, use a top 20 method based
on intensity (se¢ Note 7). The minimal required signal for
precursor ions is 500 counts, and the isolation width is 2 ppm.

. Reject charge states 1+ and prefer charge states 2+, 3+, and 4+

for precursor ion isolation.

. Utilize dynamic exclusion with an exclusion duration of 30 s

and one repeat count within 30 s. Use exclusion list size of
500 precursor ions with an exclusion mass width of 10 ppm.

. In the end, export generated data as Thermo .raw file format.

. For protein identification, use the software Proteome Discov-

erer version 1.4 (Thermo Fisher Scientific). Search spectra
against the UniProtKB /Swiss-Prot database using the Mascot
search engine version 2.5 (Matrix Science).

. Create a Proteome Discoverer workflow. Use the following

parameters: (a) taxonomy setting, homo sapiens; (b) enzyme,
trypsin, (c) missed cleavages, allow up to one; (d) dynamic
modification, oxidation (methionine); (e¢) static modification,
carbamidomethyl (cysteine); (f) precursor mass tolerance,
5 ppm; (g) fragment mass tolerance, 0.4 Da; (h) false discovery
rate (FDR), via p function (identifications with FDR >1% are
rejected).

. Import .raw data files into the Proteome Discoverer Daemon

and start the search with the created workflow.

. Open the results with the Proteome Discoverer Viewer and

export results in Excel format.

. As software for quantitative proteome analysis, use Progenesis

QI for proteomics (Nonlinear Dynamics). First, import the
LC-MS analysis .raw data files into the program.

. Select the reference run that all your other runs are aligned

to. This can either be done by yourself, or there is the option to
let the program select the reference run, either out of all runs or
out of a selection you make. An optimal reference run should
have the greatest similarity to all other runs (se¢ Note 8).

. The alignment step is most important for label-free quantifica-

tion. Therefore it is necessary to have a very accurate alignment
result. First, apply the automatic alignment, but be sure to
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check the alignment carefully when it is finished. If the result of
the alignment is not good enough, you can often alter the
result for the better by manually adding vectors to align
specific runs.

. Progenesis automatically performs feature detection, normali-

zation, and quantification. Always check results and exclude or
include features from analysis results. Exclude retention times
from washing/equilibration. Include only ion charge states of
2+, 3+, and 4+ with a minimum of three isotope peaks to
exclude contaminations from the analysis (se¢ Note 9).

. Create the experimental design, in our case cystitis vs. high-

grade UCC. Runs which, e.g., did not align properly can be
excluded.

. Identity the quantified proteins. Therefore, import Excel

results of priorly obtained identification via Proteome Discov-
erer. Consider all non-conflicting peptides for protein
quantification.

. Difterential analysis is also performed by Progenesis. You can

filter based on p- and g-value (£0.05) and fold change (>1.5)
and tag them for further analysis.

. You can perform principal component analysis (PCA) to check

if runs cluster based on experimental grouping. Also, check
regulation profiles of interesting candidates (se¢ Note 10).

. Export results of quantified proteins in Excel format.

Despite the results of the differential analysis by Progenesis,
perform a separate statistical analysis via R. Arcsinh-transform
normalized protein abundances obtained from Progenesis and
use those for z-test calculations. Adjust test p-values for FDR
control with the method of Benjamini Hochberg.

. Use normalized protein abundances obtained from Progenesis

tor fold change calculation.

. Consider proteins significantly differentially abundant between

experimental groups if they have an absolute fold change > 1.5
and an FDR-corrected p-value <0.05.

9
3.8 Statistical 1.
Analysis

2

3
4 Notes

. You can use other FTIR or IR imaging systems also. The

procedure is equivalent. Furthermore, if other options in data
collection are more convenient for you, change them. The
values given here are only recommendations that have worked
well for our work on bladder cancer.
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. For analysis of the pre-processed FTIR imaging datasets, you

can use multivariate data analyses like 2-means clustering or
hierarchical cluster analysis. This way, you select your ROIs on
spectral similarity. A better and more precise way is to train a
supervised cluster algorithm like random forests (RF). There-
fore, you need a spectral database for different tissue types that
is created by measuring known tissue samples previously. Then
the classifier (RF) can be trained, and afterwards it is possible to
annotate unknown spectral datasets by the use of this classifier.

. The coordinate transfer is the same as the transfer of coordi-

nates in geographic sciences. Beside the Helmert transforma-
tion, you can use other methods also. It is always helpful to test
the accuracy of the transfer with a test target previously.

. The centrifugation step after stopping the tryptic digest is

crucial here to remove excess RapiGest from the samples that
could potentially damage your LC system.

. The workflow can also be applied for body fluids and cell

culture experiments. An adapted sample processing could also
be carried out successfully for FFPE tissue.

. On the one hand, heating of columns is needed to reduce the

pressure of the system and to get a better peptide separation;
however, heated columns need higher flow rates for acceptable
pressure. Higher flow rates mean worse sensitivity. Thus, a
compromise between separation and sensitivity is necessary.

. In a top 20 method, the 20 most abundant peptide ions of the

full scan are selected for fragmentation and measured for tan-
dem mass spectra in the linear ion trap.

. Where possible, master mixes of all samples can be used as

optimal reference runs for alignment, as they combine features
ofall runs.

. Tryptic peptides have charge states between 2+ and 4+, while

contaminations mostly have charge states of 1+. If another
protease than trypsin is used, other charge states might apply.

Checking regulation profiles offers easy insight into the quality
of candidate proteins. It can be observed that sometimes only
tew but high differences can boost statistical significance.
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