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FTIR spectroscopy of biofluids revisited: an automated
approach to spectral biomarker identification†‡

Julian Ollesch,*a Steffen L. Drees,a H. Michael Heise,a Thomas Behrens,b

Thomas Brüningb and Klaus Gerwert*a

The extraction of disease specific information from Fourier transform infrared (FTIR) spectra of human

body fluids demands the highest standards of accuracy and reproducibility of measurements because

the expected spectral differences between healthy and diseased subjects are very small in relation to a

large background absorbance of the whole sample. Here, we demonstrate that with the increased

sensitivity of modern FTIR spectrometers, automatisation of sample preparation and modern

bioinformatics, it is possible to identify and validate spectral biomarker candidates for distinguishing

between urinary bladder cancer (UBC) and inflammation in suspected bladder cancer patients. The

current dataset contains spectra of blood serum and plasma samples of 135 patients. All patients

underwent cytology and pathological biopsy characterization to distinguish between patients without

UBC (46) and confirmed UBC cases (89). A minimally invasive blood test could spare control patients a

repeated cystoscopy including a transurethral biopsy, and three-day stationary hospitalisation. Blood

serum, EDTA and citrate plasma were collected from each patient and processed following predefined

strict standard operating procedures. Highly reproducible dry films were obtained by spotting sub-

nanoliter biofluid droplets in defined patterns, which were compared and optimized. Particular

attention was paid to the automatisation of sample preparation and spectral preprocessing to exclude

errors by manual handling. Spectral biomarker candidates were identified from absorbance spectra and

their 1st and 2nd derivative spectra using an advanced Random Forest (RF) approach. It turned out that

the 2nd derivative spectra were most useful for classification. Repeat validation on 21% of the dataset

not included in predictor training with Linear Discriminant Analysis (LDA) classifiers and Random Forests

(RFs) yielded a sensitivity of 93 � 10% and a specificity of 46 � 18% for bladder cancer. The low

specificity can be most likely attributed to the unbalanced and small number of control samples. Using

this approach, spectral biomarker candidates in blood-derived biofluids were identified, which allow us

to distinguish between cancer and inflammation, but the observed differences were tiny. Obviously, a

much larger sample number has to be investigated to reliably validate such candidates.
Introduction

Fourier transform infrared (FTIR) spectroscopic analysis has
been applied for many clinical chemistry applications and
proposed for medical diagnosis.1–3 The infrared absorbance
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spectrum of a body uid represents a ngerprint-like integral
biochemical status of a patient's sample. The advantage is that
no additional markers or labelling are required, and multiplex
parameters of the proteome, lipidome, and metabolome are
recorded at once. By application of suitable bioinformatics, not
only a multi-parameter clinical analysis can be achieved by a
single and fast measurement,4 but also markers for diseases can
be extracted from specic spectral band patterns.5–13

In the following, we present an automatized FTIR spectro-
scopic setup of our study on the identication of blood-borne
spectral bladder cancer marker candidates. This approach was
applied to identify the expected tiny changes in FTIR spectra of
blood that may be caused by only a few thousand tumour cells.
Previously observed limitations of spectroscopic sample prep-
aration and experimental errors were avoided by using
advanced standardized procedures. Particular care was exer-
cised to minimize the user interaction with samples and spectra
This journal is ª The Royal Society of Chemistry 2013
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by predominant automation. Spectral key procedures such as
e.g., ‘visual inspection’ of data for outliers, or ‘manual baseline
correction’, usually depend on an individual, subjective
assessment, which nally inuences the prediction outcome.
For the ultimate credibility, reproducibility, ease of use and
speed, the sample analysis was standardized and automated as
far as reasonably achievable.14

The specic aim of the study was to distinguish between
urinary bladder cancer (UBC) and non-bladder cancer patients
based on FTIR spectroscopy of blood samples from suspected
bladder cancer patients. UBC is one of the most frequent
tumours in the worldwide population, affecting men approxi-
mately three times more oen than women.15,16 Risk factors
include smoking and occupational exposure to chemical toxins,
whereas in developing countries it may also be fostered by
infectious diseases.15–18 Upon early detection and surgery, a high
ve-year survival rate above 72% is observed.19 A variety of blood
borne marker candidates for UBC has been discussed,20–28 so
that a combination of marker molecules may produce a
detectable ngerprint in the mid-infrared spectra of blood
serum and plasma.

Cystoscopy by urologists outside of our study substantiated
the initial cancer suspicion, and a further cystoscopy for a
transurethral resection (TUR) of urinary bladder tissue for a
pathological examination was indicated. TUR is an uncom-
fortable procedure bearing the risks of bleeding, inamma-
tion, thrombosis, embolism, bladder perforation or stricture of
the urethra. Usually, three to four days of stationary hospital-
ization are required. Cystoscopy alone is limited with respect
to the detection of particularly early stages of bladder cancer.29

The patients of the control group mainly suffered from a
urinary tract infection, which can be treated with antibiotics.
Therefore, a negative non-invasive urine or blood-based test
could spare non-cancer patients an unnecessary surgical
treatment, the accompanying risks, and avoid hospitalization.
Such tests could support the established clinical diagnostics
with additional indicators, eventually enabling an earlier onset
of therapy.

As the gold standard, UBC cases were conrmed, graded
and staged with cytology and histopathology on the collected
tissue samples. All control patients were subjected to the
appropriate treatment and aercare outside the frame of this
study. Two prostate cancer cases were included because of
their clinical relevance; intruding prostate cancer tissue into
the bladder is a phenomenon oen observed. Blood samples
were drawn before TUR. Strict standard operating procedures
were dened to ensure unique standards in the sampling
process, serum and plasma preparation, transport and sample
storage. Patient background, medication and blood status were
documented according to the standards of Good Epidemio-
logical Practice.

A specic pattern has to be detected among the immense
biological variability of abundant substances as found for blood
proteins or metabolites. For an advanced blood-based assess-
ment, the spectra of serum and two plasma preparations were
combined into one patient-representative feature vector, along
with the respective 1st and 2nd derivative spectra that may reveal
This journal is ª The Royal Society of Chemistry 2013
subtle band shis. Differences between serum and plasma are
expected due to coagulation versus coagulation prevention
during preparation. Blood coagulation inhibitors may mask
specic band components, justifying two different plasma
preparations.

With a limited number of test subjects, dedicated feature
selection methods are of particular importance for diagnostic
purposes. By selecting classication relevant spectral features,
abundant uninformative, uncorrelated variables are removed.
Thus, the dimensionality of the classication problem can be
reduced, by which the chance of classier overtting is lowered
as well. In Disease Pattern Recognition (DPR), the feature
selection is the crucial process by which the subtle differences
between spectra of the disease status are identied.3

For the prediction of the patient status based on the selected
features, we used a classifying linear discriminant analysis
(LDA) as a suitable method requiring only low computer pro-
cessing power, and a complex random forest (RF) ensemble
classier, which is computationally intensive. Both classiers
were able to predict a patient's disease status with comparable
quality.

An RF classier consists of a collection of decision trees,
where each vertex separates the feature space based on a
random choice of features. Whenever a feature constitutes the
splitting feature at a vertex in a decision tree, one can determine
the gain in information either based on entropy or based on the
so-called Gini importance, the latter of which is particularly
popular for random-forest based feature selection.30–33 Conse-
quently, we setup one type of RF classier for the exclusion of
most classication irrelevant features, and one ensemble RF
classier for disease status prediction.

The identied spectral patterns were thoroughly validated to
assess their diagnostic value. As a compromise to our relatively
small dataset of 135 patients, all selection and classication
procedures were kept in strict Monte Carlo cross validation
(MCCV) schemes with random dataset splits into training and
independent test sets to avoid the false detection of dataset-
specic randomly correlating features. The nal predictors were
validated on further MC derived independent test sets. We are
aware of the limitations for generalization,34 but are convinced
that the dataset of our current bladder cancer study allows a
preliminary evaluation along these lines.

In our study, the technical problems of sampling, sample
preparation, spectroscopic measurement, data preprocessing
and feature selection were addressed. A conclusive strategy for
highly reproducible, automated high throughput FTIR spec-
troscopy with dedicated equipment and user-independent
algorithms was developed, and the results for this special
demanding DPR study are reported.
Experimental

The workow from patient samples to classication is sche-
matically summarized in Fig. 1. Blood was sampled, processed,
and sample substrates were robotically prepared. Absorbance
spectra were collected and preprocessed by automated
procedures.
Analyst, 2013, 138, 4092–4102 | 4093



Fig. 1 Scheme that was followed to process each patient's sample. Spectra of
three blood preparations of each patient were measured and processed in
quadruplicate until outlier removal and averaging. 1st and 2nd derivatives were
calculated and concatenated to form a representative complex spectrum of a
patient's biochemical blood status. Class assignment obtained by the medical
gold standard was used for feature selection and classification.

Analyst Paper
Blood sample preparation

A total number of 108 men and 27 women participated in the
study. The dataset consisted of 89 UBC patients (73.1 � 11.2
years of age, 72 men, 17 women), of which 30 were recurrent
cases (1 urothelial papilloma, 38 G1, 28 G2, 20 G3-G4 (WHO
1973); or according to WHO 2004: 1 urothelial papilloma,
1 papillary urothelial neoplasm of low malignant potential
(PUNLMP), 61 low grade, 23 high grade). For nine cancer
patients only one of both routine gradings35–37 was available.
Stagings were determined in 79 cases: 42 Ta, 23 T1, 5 T2, 8 T2a,
and 1 T4a. The 46 non-bladder cancer controls (72.5 � 10.8
years of age, 36 men, 10 women) had the following case history:
40 cystitis cystica, 1 cystitis lymphofollicularis, 1 urethritis, 2 open
bladder tumor resections, 2 glandular prostate carcinoma, and
one inverse urothelial papilloma.

Blood samples were collected and processed to serum,
ethylene diamine tetraacetic acid (EDTA), and sodium citrate
stabilized plasma (BD Biosciences, Heidelberg, Germany) at the
Marien-Hospital Herne (Herne, Germany) by study nurses
following standard operating procedures (SOPs). The SOPs had
been developed with the Scientic Epidemiological Study
4094 | Analyst, 2013, 138, 4092–4102
Centre of the IPA (Institute for Prevention and Occupational
Medicine of the German Social Accident Insurance, Institute of
the Ruhr-Universität Bochum, Germany, member of the
research initiative PURE). Processed blood samples were shock
frozen within minimal time lapse of less than 30 min for
plasma, and 50 min aer sampling for serum. Serum and
plasma samples were delivered as 400 ml aliquots and stored at
�80 �C until experimental use.

For preparation, samples were thawed at 4 �C and 47 ml of the
respective liquid were added to 3 ml of ltered KSCN solution
(0.5 M), yielding a KSCN spike of 30 mM concentration for FTIR
quantication. The samples were then mixed at 1000 rpm for
1 minute and centrifuged for 30 s at 2000 � g. A volume of 15 ml
of each sample was transferred onto 384 well microtiter plates
(Greiner Bio-one GmbH, Frickenhausen, Germany), which were
sealed immediately with an adhesive aluminium foil (Greiner)
to prevent evaporation. Sealed plates were centrifuged at 2000�
g at 10 �C for 2 min to settle the liquid within the wells and to
remove air bubbles.

Sample spotting

A compact, benchtop sized robotic spotting system (Instrument2,
M2 Automation GmbH, Berlin, Germany) was used to dispense
the samples in quadruplicate on 384-well silicon multi-well titer
plate (MTP) substrates (Bruker Optics, Ettlingen, Germany).
Substrates were cleaned with sodium hypochlorite solution and
plasma treatment (Zepto, Diener plasma surface technology,
Ebhausen, Germany) before use. Each well covers a circular area
of 4 mm diameter, which was almost perfectly covered with the
sample. A total volume of 3 ml was loaded at a syringe-pump
controlled speed into the dispenser. The single sample lm was
formed from approximately 50 nl. Subsequently, the sample
loaded substrate plates were vacuum-dried for 10 min.

Transmission FTIR spectroscopy

For each measurement, an inner diameter spot of 3 mm was
transilluminated at each MTP well position. The measurement
was started immediately aer vacuum drying in transmission
mode at ambient temperature (22 � 1 �C) on a Vertex 70V
vacuum FTIR spectrometer with the HTS-XT MTP reader
extension and the Twister robotic plate feeder (Bruker Optics).
All parts of the optical path that could not be evacuated were
thoroughly dry-air purged (25 l min�1, Parker-Balston, Parker-
Hannin, MA, USA). Interferogram acquisition was double
sided – forward/backward with the internal deuterated triglycine
sulphate (DTGS) detector; 64 scans were accumulated before
Fourier transformation with a spectral resolution of 2 cm�1.
Blackman-Harris-3-term apodization, Mertz phase correction
and 4� zero lling was applied. An average signal to rms-noise
ratio (S/N) of 20 400 : 1 (root mean square, rms) was determined
with the OPUS soware for interval data of 2100–1900 cm�1 on
20 randomly selected raw spectra of blank silicon MTP wells.

Spectral preprocessing

Water vapour lines from atmospheric absorption were corrected
using scaled subtraction.38 A Fourier transform based low pass
This journal is ª The Royal Society of Chemistry 2013
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lter with an appropriate Gaussian apodization function
removed noise with full width at half height <4 cm�1 as reported
in earlier studies.39,40 Outliers were removed based on the
Pearson-correlation of the quadruplicate spectra to their
median, calculated for the CH-stretching and the ngerprint
spectral regions. The two closest spectra were averaged, and the
less correlated spectra were discarded. For an adaptive baseline
correction, spectra were split up into ve overlapping sections
(875–2010 cm�1: ngerprint and amide I/II; 1860–2200 cm�1:
KSCN; 2100–2700 cm�1: signal free; 2250–3700 cm�1: CH-
stretch/amide A; 3650–4000 cm�1: signal free), each of which
was then tted with an individually parameterized adaptive
iteratively reweighted penalized least squares (airPLS) base-
line.41–43 Details about the parameterization are given in the
ESI.‡ For a concatenated dataset of serum and plasma spectra,
the absorbance spectra were min–max–normalized on the KSCN
peak between 2150 and 2050 cm�1. The 1st and 2nd derivatives
were calculated by Fourier expansion with a Gaussian function
for low pass ltering at 6 and 8 cm�1 cut off, respectively. The
set of 1st derivative spectra was linearly scaled up to a maximum
absolute amplitude of 0.5 maintaining interspectral relations.
Similarly, the set of 2nd derivative spectra was consistently
scaled up to a respective maximum absolute amplitude value
of 0.25.

The absorbance spectra of serum, EDTA plasma and citrate
plasma were concatenated with the respective 1st and 2nd deriv-
ative spectra into one extended feature vector for each patient.
The nal dataset comprised the intervals of 3200–2800 cm�1 and
1750–875 cm�1, covering spectral ngerprint features of all
relevant biomolecules as found in blood above noise-level in
absorbance at each 11 493 wavenumber variables (Fig. S2–S4‡).

Attenuated total reection setup

Attenuated total reection (ATR) absorbance spectra for
comparison with transmission spectra (see Fig. 2) were recor-
ded on a Bruker IFS66 spectrometer equipped with a Dura-
SamplIR II diamond mATR accessory (Smith Detection,
Edgewood, MD, USA). The absorbance of 5 ml serum was
Fig. 2 ATR-spectra of dry (dashed blue) and liquid serum (red), respectively, and
a dry-film spectrum measured in transmission (black) are shown for comparison
with obvious band shifts and different band shapes. The serum ATR spectra are
affected by dispersion effects, whereas the solution spectrum suffers from water
absorbance overcompensation as measured versus a water background.

This journal is ª The Royal Society of Chemistry 2013
recorded against a distilled water background. A sample of 5 ml
of 1 : 20 diluted serum was dried under a slow N2 ow and
repeatedly recorded versus the blank ATR element until no
further spectral changes were observed. A total of 512 bidirec-
tional double sided interferograms were co-added at a resolu-
tion of 4 cm�1. Again, Blackman-Harris-3-term apodization,
Mertz phase correction and 4� zero lling were applied.

Atomic force microscopy

The surface characteristics of a robotically deposited sample
spot on the Bruker silicon substrate (approximately 200 mm in
diameter) were determined by atomic force microscopy (AFM,
Witec alpha 300 AR, Ulm, Germany). An area of 65� 65 mm2 of a
single spot, i.e. approximately a quarter, was scanned with a
lateral resolution of 0.15 mm, whereas 80 � 200 mm2 of the
contact area of overlapping spots was measured in tapping
mode with a lateral resolution of 0.625 mm. The removal of bad
scan lines, offset correction and the preparation of graphics
were done using the Gwyddion soware (Version 2.30).

Random forests for feature selection and classication

RF classiers were used as single forests and as an ensemble
classier of 1001 RFs. Following the theoretical considerations
and practical observations on settings33 with few data points in
a very high dimensional space, the RF classiers were param-
eterized as follows: the number of trees per forest was three
times the number of features with a maximum of 5000, if more
than 1666 features were present. The number of features
randomly selected for the split of each tree node was a third of
the number of features rounded up to the nearest integer. All
other tunable parameters were set by unaltered default of the
routines available for download (http://code.google.com/p/
randomforest-matlab/, January 30, 2013).

Each RF was trained and validated on an individual MC
derived data subset. Our MC algorithm arranged the same
number of patients per class for the validation dataset. For
feature selection, the total dataset of 135 patients was split into
12 randomly selected sets of 125 (84 UBC, 41 controls). On
these, 192 further training-validation pairs of 69/15 UBC and 26/
15 control patients were generated. 192 RFs were trained and
validated on these, the average classication error rate was
registered, and the Gini importance values of the features used
in the 192 RFs were accumulated. Aer removal of the 20% least
important features based on their Gini importance, 192 further
RFs were evaluated on 192 new MC based cross-validation
(MCCV) datasets, until only 4 features remained. The set of
features producing the lowest misclassication rate was
selected as the optimum set. Then, eleven additional cycles
were calculated using the other randomly selected groups of
125 patients.

For calculations with reduced dimensionality using the
concatenated absorbance spectra of all three biouids only,
10 total cycles were calculated on randomly selected subsets of
125 patients with the identical algorithm. The same procedure
was carried out separately for rst and second derivative spectra
with 11 and 13 total cycles, respectively.
Analyst, 2013, 138, 4092–4102 | 4095
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The selection frequency of individual features was used as a
superior selection criterion. The average classication accuracy
of 50 LDA classiers in a leave-28-out MCCV on the total 135
patients, based on the feature selection frequency under the
scheme of a stepwise decreased threshold, was determined. The
feature set resulting in the highest average classier accuracy
was selected for additional RF evaluation (see Tables 2 and 3).

The ensemble classier for disease state prediction con-
sisted of 1001 RFs, of which each was validated in an individual
MCCV (107 training, 14 test samples) to perform with an error
rate of less than 50%. The majority vote of the 1001 RFs was
used as ensemble classier prediction.
Bioinformatics environment

Random forest calculations were performed within the Matlab
environment, Version 2012a with the R-project based44 Matlab
port (as found on http://code.google.com/p/randomforest-
matlab/, January 30, 2013) on a High-Performance Computing
Server Supermicro SYS-5086B with 8� Intel� Xeon� Westmere
EX (E7-8837, 2.66 GHz, 8-Core), 512 GB RAM. Linear discrimi-
nant analysis (LDA) was performed with the internal Matlab
function (‘classify’) with a quadratic discriminant function. The
a priori class membership probability was empirically calcu-
lated for taking into account the different number of control
and UBC patients. Final predictor training was performed on an
office PC equipped with Intel Core2Quad CPU Q9650@3.0 GHz,
8 GB RAM (Dell Optiplex 780) running Matlab 2012a.
Results and discussion

The task to collect infrared spectra from liquid samples appears
simple at rst sight. However, the optimization with regard to
analyte detection limit, spectral reproducibility, and speed is a
demanding challenge.

First, the most suitable measurement technique has to be
selected. There are basically two options for the acquisition of
absorbance spectra: attenuated total reection (ATR) and
transmission, which have been frequently described in the
literature. Both are suitable for liquid and dry samples with
particular limitations and advantages. Here, we face two further
alternatives, i.e. to sample spectra of the liquid as-is, or to
develop advanced preparations, for which the available sample
volumes may also be of decisive importance.
Transmission versus ATR, liquid or dried?

A simple, very reproducible method is to collect spectra from a
drop of body uid on a micro-ATR device as demonstrated in
previous studies.4,13 Some drawbacks are inherent to this
methodology using liquid samples, as the water compensation
is imperfect, the detection limit is relatively high because only
an approximately micrometer depth of the sample volume is
detected, and spectra suffer from dispersion effects. Sample
volumes for dry-lm preparations were even reduced to sub-
microliter volumes using microdispensing devices,45,46 but the
suggested technology was not appropriate for high throughput
application.45 A further limitation was still sample
4096 | Analyst, 2013, 138, 4092–4102
inhomogeneity with crater-shaped dried serum, although this
could be partly reduced by the limited ATR probing depth. A
different approach was reported recently, when a dried lm
prepared from 100 ml of plasma or serum was scanned at
different sample locations with a microscopic ATR tip,13 which
has also found its use in the low-spatial-resolution analysis of
tissue.47 This approach avoided the possible thickness inho-
mogeneities of the dried samples with the comparably small
(0.0625 mm2) detecting area of the mATR crystal.

Another solution is to analyse the body uid with a ow-
through cuvette of a xed path length.48 This setup suffers again
from imperfect water compensation and a high detection limit,
due to the chosen path lengths of 5–30 mm, with the conse-
quence that some spectral intervals cannot be analysed due to
strong water absorption. An advanced liquid handling system is
also required for high throughput application,49 and cleaning
the system between measurements, particularly from adsorbed
proteins, requires dedicated and elaborate solutions.50

In contrast, transmission spectra of vacuum-dried serum
lms offer an excellent signal to noise ratio with neither non-
compensated water artefacts nor nonlinear absorbance effects
(Fig. 2).

High throughput capability

To employ transmissionmeasurements with dried samples, ow
cells are to be replacedwith amovable solid infrared-transparent
sample substrate. Automated sample changers have been
developed by several companies (Bruker, PIKE, Specac) and were
used in previous research.5 With those, the sample preparation
and the time-consuming cleaning procedure of the substrate are
decoupled from the actual spectroscopic measurement. Those
setups are usually free of water-associated interference, because
the prepared samples can simply be vacuum dried and stored
water-free until measurement, which is optimally done in a dry
gas-purged or evacuated compartment. The achievable detection
limit is low, because the relative large sample volumes condense
to highly concentrated, thin lms upon water evaporation. Aer
water removal, a relatively large area of the lm can be analysed.
Spectral artefacts due to infrared transmission are reduced to a
minimum and can generally be explained with established
models.51–53 The exchangeable sample substrate is ideal for
high throughput solutions, because the modern standard MTP
formats can be maintained using the appropriate substrate
shape. Due to the mentioned separation of preparative steps
from the spectroscopic measurement, the parallel processing
of sample substrates can be automated and optimized individ-
ually for each biouid.

Reproducible homogeneous dry lms of biouids

The deposition of a dened volume of a liquid sample onto an
infrared transparent substrate appears to be an easy task. It is
only necessary to spread the same amount of liquid reproduc-
ibly onto one position of the substrate, and then to position the
sample reproducibly into the spectrometer beam.

Unfortunately, these three demands are hardly met by
manual pipetting devices. All positioning has to happen within
This journal is ª The Royal Society of Chemistry 2013
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the tolerance of the prepared at dry lms. Pipetting precision
in the lower nanoliter range is crucial, because body uids are
highly concentrated solutions of proteins, salt, lipids, and
carbohydrates to name only the most abundant compounds.
The total protein as found in blood plasma with an average
concentration of approximately 70 mg ml�1 produces the major
absorbance. A mass difference of 1 ng would originate from a
14 pl difference of dispensed volume.

By drying a droplet of such a biouid, structures termed
“coffee rings” are formed,54 which exhibit an inhomogeneous
distribution within the substance lm. With insufficient posi-
tioning accuracy, recording a spectrum particularly of the
droplet border area was shown to produce spectral artefacts,
due to a varying lm thickness and locally wedge-like geometry
of the crater edges.55,56 Thus, the approach to reproducibly
spread an oversized (compared to the detection beam radius)
droplet on the MTP substrate aided by robotics is an appro-
priate compromise to avoid its usual coffee-ring topography.14

However, subtle variations of positioning and the sample drying
process led to a detectable spectral variance in our manually
spread samples (see Fig. 3).

One different approach to deposit a minute amount of
solution is a nebulizer, which still produced wedge-shaped
sample lm edges.57 In two further approaches small droplets
were used for dry-lm preparation, but the capability to print
patterns of sub-nanoliter volumes was not evaluated. In
combination with high performance liquid chromatography
(HPLC), spots of the analyte were applied to an infrared
compatible substrate and further analysed using FTIR micros-
copy.58–60 Also, nanoliter volumes were evaluated for the quan-
titative determination of glucose.45,46 Particularly, dried down
spots of the lowest volumes used in those previous projects
appeared to be the most homogeneous, as far as could be
judged by the shown topography. Arranging small sample
volumes for dry-lm patterns on the wells of a MTP substrate
was proposed and patented,61 but not yet evaluated for its use in
FTIR spectroscopy.
Fig. 3 Manual placing of a 1 ml serum drop (red line and red-framed inset) and
0.5 ml of serummanually spread out on the Si substrate (blue line and blue-framed
inset), resulting in highly diverse spectra (min–max–normalized). The highest
reproducibility for the quadruplicate samples was achieved with optimized
robotic sample dispensing (four superimposed black lines, see also Fig. 4E). The
inner well diameter was 4 mm (see the inset).

This journal is ª The Royal Society of Chemistry 2013
Here, we report on the application of a robotic dispensing
system with a piezo-driven capillary dispenser head for
distributing biouid samples on the MTP silicon substrate. An
assortment of different spotting patterns was analysed for the
spectral reproducibility as manifested by the average absor-
bance difference, relative standard deviation, and required
spotting time (see Fig. 4 and Table 1). The so far optimum
pattern is described by a merged concentric, circular arrange-
ment resulting in a lm with holes (Fig. 4E). The pattern con-
sisted of 217 drops of approximately 200 pl each, which were
deposited onto each single well of the silicon substrate.

Due to the extremely low volumes spotted, the formation of a
coffee ring54 as still observed with nanoliter volumes45,46 was
avoided. An atomic force microscopic (AFM) scan conrmed
that at such a low volume, an indented cylinder shape is formed
instead of an irregular ring structure (Fig. 5A and B). The height
difference of the outer and inner spot region is less than 1 mm
with most of the sample thickness homogeneously levelled at
2 mm. In merged droplets, the inner droplet surface continues
into the centre of the next spot (Fig. 5C and D). Thus, an even
but occasionally holey lm of approximately 2.5–3 mm thickness
was formed. Spectra of these lms yielded the highest repro-
ducibility (Fig. 3), so that the residual holes turned out to be
irrelevant for the spectral measurement.
Fig. 4 Using a piezo-electronic sample dispenser, spotting patterns of sub-
nanoliter serum sample droplets were tested for spectral reproducibility: rectan-
gular (A–C) and circular (D and E) spotting arrangements. The latter ones covered
the MTP-well best and were considerably faster to spot (see also Table 1). Indi-
vidual spot positions of the blended pattern (E) are indicated for the innermost
three circles.

Table 1 Impact of the tested spotting pattern on spectral reproducibility (see
Fig. 4) of identical samples: concentric, blended spots in a circular pattern have
been found to be the best compromise concerning reproducibility and prepara-
tion time. All values were averaged over the intervals of 3200–2800 cm�1 and
1750–850 cm�1, particularly, the wavenumber-wise relative standard deviation

Pattern A B C D E

Avg. DAa 0.08 0.11 0.25 0.13 0.10
Avg. std. dev./DA � 103 1.85 1.56 0.83 0.98 0.96
Spotting time/min 4 wells 4 9 7 4 4

a Absorbance min–max–normalized on 2150–2050 cm�1.
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Fig. 5 An approximately 200 pl drop of serum dried with only a rudimentary
crater shape ((A), schematic position; (B) AFM scan). Merging droplets (Fig. 2E)
formed a continuous film at the maintained thickness of the inner droplets ((C),
schematic position; (D), AFM scan).

Fig. 6 Absorbance spectra were subdivided into regions containing (i) zero
spectral information, (ii) amide A and C–H stretching vibration bands, (iii) zero
spectral information, (iv) the KSCN-marker band, and (v) the fingerprint region
(A). The efficiency of the algorithm to remove Fresnel-scattering and thin film
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Highly reproducible sample quadruplicates were repeatedly
prepared and measured with optimized spectrometer settings.
To eliminate the spectral substrate contribution and localiza-
tion effects, single channel background spectra for the indi-
vidual positions were recorded with identical settings of the
freshly cleaned MTP substrate. Calculation of the absorbance
spectra and further spectral processing was automated, and pre-
parameterized algorithms were used to achieve maximum
process reproducibility.
interference artefacts is demonstrated on 10 spectral replicates of a test serum (B),
and the respective corrected spectra (C).
Preprocessing spectra

The only spectral distortion observed on the highly reproduc-
ible spectra is a minor baseline inconsistency, which is most
likely attributable to multi-beam internal interference within
the sample lm due to back reected radiation from the
substrate, caused by the cone-like beam geometry of a 2�
magnifying mirror within the HTS-XT accessory, and the large
difference of refractive indices of the sample and the substrate.
The spectral effects were described,51–53 but due to the overlay of
these effects, tting an analytical function would have created
another source of error from an underdetermined problem.
Instead, the effects can be sufficiently removed by a signal
frequency sensitive baseline correction algorithm aer splitting
the spectral frequencies into regions matching the respective
information density.41–43 So baselines can be adapted to a wide
range of shapes, but in extreme cases these will affect also broad
bands. This is undesirable, e.g. for the amide I/II region, where
spectral information would be lost. Generally desirable are stiff
baselines, which maintain spectral feature delity preserving
even broad absorption bands. However, those cannot match a
broad, slightly non-linear function simultaneously (see Fig. 6A,
segment (iii)). Adapting the stiffness of baselines to the partic-
ular spectral section yielded the best results (Fig. 6B and C; for
parameters and the algorithm see ESI‡).
Discussion of feature selection

Without feature selection, the misclassication error rate of an
RF predictor reached an ambiguous value of 50%, a classifying
4098 | Analyst, 2013, 138, 4092–4102
Linear Discriminant Analysis (LDA) of the scores of the rst two
principal components of the dataset achieved 32% with an
obviously insufficient class separation (Fig. S1‡). To improve
classication performance, a feature selection was introduced,
reducing the amount of redundant and diagnosis-uncorrelated
data. Therewith, a more robust classication was expected
based on the dimensionality-stratied dataset. Concomitantly,
wavenumber variables were identied which contain informa-
tion most important for classication. Finally, these represent
the disease associated spectral biomarker candidates.

Amajor challenge in both feature selection and classication
is constituted by the combination of a small number of subjects
(here: N ¼ 135) in contrast to a large number of features (n ¼
11 493, due to the concatenation of wavenumber–intensity pairs
of three absorbance spectra and their respective 1st and 2nd

derivative spectra). Univariate approaches for feature selection
commonly perform particularly poor in this situation, in
particular due to the relatively small number of subjects.62 Thus,
it is inevitable to perform amultivariate feature selection, which
needs to deal with the exponential growth of the number of m
features that can be drawn out of n variables. For obtaining the
best possible multivariate selection of features, we combined
two recent approaches from the machine learning literature.
First, we followed recent studies32,33 and utilized random forest
classiers63 for feature selection. Second, we integrated this
approach into a “feature-shaving”30,32 or “wrapper”11 approach,
This journal is ª The Royal Society of Chemistry 2013



Fig. 7 In the fingerprint region of citrate plasma absorbance (A) and 1st deriv-
ative spectra (B), no classification relevant spectral features were identified. Five
features were identified in the 2nd derivative spectrum (C) that was repeatedly
selected in at least seven of twelve selection cycles (D). Spectral class averages are
shown enlarged in the range of 900–1060 cm�1 ((C), inset) with the selected
features highlighted (red: UBC, black circle: control).
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which – in contrast to immediately selecting a small number of
most signicant features – eliminated a fraction of the most
insignicant features iteratively, until only a small number of
highly signicant features remained. The iterative feature-
shaving approach was originally termed “gene shaving”30 due to
its origin in gene selection on microarray chips. It was reported
to be superior to other methods used on high dimensional
genetic micro-array data,64 on spectral imaging data,65 and
biouid spectra.31,32

For further reduction of the probability of overtting, a
repeated feature selection was proposed.66 Consequently, we
collected the results of 12 consecutive feature selection cycles of
the iterative algorithm on Monte Carlo (MC) generated data
subsets. The occurrence, i.e. the number of feature selection
cycles that identied a particular wavenumber variable, was
registered and used for a stepwise top-down identication of
the optimal feature subset for classication.

The feature selection result for the spectral region depicting
the ngerprint regions of absorbance, 1st and 2nd derivative
spectra of citrate stabilized plasma is shown in Fig. 7. Five
features were repeatedly identied in the 2nd derivative spec-
trum of citrate plasma (Fig. 7C), whereas none was found in its
absorbance or 1st derivative spectra.

Performance results of LDA (Table 2) and RF classiers
(Table 3) indicate a selection of discriminating features of
different predictive qualities from the reduced datasets of
absorbance, 1st and 2nd derivative alone. It is remarkable that
the only feature of the 1st derivative set identied in 11/11 cycles
was also chosen in the selection scheme on the total dataset, as
were also all four features found signicant in the calculations
of the isolated 2nd derivative spectra set.

The best validation results on our dataset were obtained with
a total of een features that were found to be relevant in more
than seven of the twelve selection cycles (Fig. 8), one in the
serum 1st derivative, four in the serum 2nd derivative, four in the
EDTA plasma 2nd derivative, and six in the citrate plasma 2nd

derivative of the absorbance spectrum. It is encouraging
that neighbouring features were identied, which indicates
the classication importance of an actual spectral band.
However, not all neighboured features met the threshold
(Fig. 7D and S2–S4‡).

Some selected wavenumber variables exhibit a relatively
large ordinate distance when spectral class averages are exam-
ined, and some are close (Fig. 8). The latter can be thought of as
anchor points for classication, whereas features with larger
ordinate distances bear the classication relevance.

Including the total spectral dataset enabled the identica-
tion of the discriminative feature in the 1st derivative spectra
along with the most important 2nd derivative features in the
course of a single calculation, which required less time to
calculate and validate than to consider separate calculations on
three separate datasets. The validation results of the classi-
cation by two different classiers (see below) on the selected
feature sets show that a meaningful selection of relevant
wavenumber–intensity pairs for the discrimination of UBC and
control patients was achieved. However, whether the applied RF
based feature selection method proves best has to be further
This journal is ª The Royal Society of Chemistry 2013
evaluated on an extended dataset and in comparison with a
variety of selection techniques.
Classication of control samples versus bladder cancer

With relevant wavenumber variables identied, we proceeded
with the spectral classication of whether the present dataset
was sufficient for UBC detection among suspected subjects. As
Analyst, 2013, 138, 4092–4102 | 4099



Table 2 Average performance data of 50 LDA classifiers on optimum feature
sets of concatenated absorbance only (abs), 1st derivative only (1st der), and 2nd

derivative spectra (2nd der) of a concatenated spectral serum–EDTA plasma–
citrate plasma vector in comparison with the performance on features selected
from the total dataset. (cyc: threshold of cycles of feature selection, # f: number of
features, acc: % accuracy, MER: % average misclassification error rate, sens: %
sensitivity, spec: % specificity.)

Cyc #f Acc MER Sens Spec

Abs $2/10 25 56 � 5 14 � 1 95 � 6 18 � 11
1st der $3/11 11 55 � 7 22 � 4 78 � 13 33 � 13
2nd der $12/13 4 69 � 7 18 � 2 89 � 9 49 � 11
Total set $7/12 15 66 � 8 8 � 2 86 � 7 45 � 14

Table 3 Average performance data of 50 ensemble RF classifiers on optimum
feature sets of concatenated absorbance only (abs), 1st derivative only (1st der),
and 2nd derivative spectra (2nd der) of a concatenated spectral serum–EDTA
plasma–citrate plasma vector in comparison with the performance on features
selected from the total dataset (see Table 2 for the legend)

Cyc #f Acc MER Sens Spec

Abs $2/10 25 58 � 5 40 � 2 93 � 7 23 � 11
1st der $3/11 11 60 � 6 38 � 2 93 � 7 28 � 11
2nd der $12/13 4 64 � 8 35 � 2 86 � 9 42 � 12
Total set $7/12 15 68 � 7 33 � 2 93 � 10 46 � 18

Fig. 8 The fifteen selected feature variables with class-averaged, centred
intensities and standard error of mean of the control (black) and UBC (red) groups
from serum 1st derivative (i), serum 2nd derivative (ii), EDTA plasma 2nd derivative
(iii) and citrate plasma 2nd derivative spectra (iv) are shown, which enabled a
disease status prediction by the optimized random forest classifier.

Fig. 9 For illustrative purposes the LDA classifier separating controls versus UBC
based on the scores of the first and second principal components (PC) of spectra
comprised of the selected features is displayed. The misclassification error rate
was calculated as 24%, which is worse than the error of 11% from direct LDA
classification on the fifteen selected features.
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validation is a crucial aspect, 50 training and independent test-
sets were randomly chosen from the total dataset with a
randomized leave-14-per-class-out procedure to build test sets
consisting of 28 subjects (equivalent to 21% of the dataset)
which were set aside for validation.

Using each set of split data, 50 LDA and 50 ensemble RF
predictors were trained and applied to the respective test sets.
4100 | Analyst, 2013, 138, 4092–4102
The average result of the LDA predictors on the corresponding,
independent test sets yielded an accuracy of 66 � 8% (mean �
standard deviation, Fig. 9), and the random forest predictor
achieved a value of 68 � 7%. The LDA classiers yielded a
sensitivity of 86 � 7% and a specicity of 45 � 14%, whereas RF
predictors achieved respective values of 93 � 10% and 46 �
18%. In summary, a sensitive UBC detection is possible with
both classiers, although both predictors lack specicity in the
exclusion of non-UBC controls, which is yet insufficient for
clinical use.

Neither LDA nor RF classiers performed well using absor-
bance or 1st derivative features only (Tables 2 and 3). Taking the
standard deviations into account, the LDA classiers performed
comparably well on four features selected from the 2nd deriva-
tive spectra only and on the 15 features selected from the total
dataset. The performance based on the 15 features appears
worse on average by 3 per cent units, but this is outweighed by a
more convincing performance based on 15 features, as shown
by the highly signicantly lowered, and less than half misclas-
sication error rate (as determined by a paired t-test at a 99%
condence level). For illustrative purposes, an exemplary clas-
sication result on the scores of the rst two principal compo-
nents of the 15 feature dataset is shown in Fig. 9.

The comparison of 2nd derivative and total dataset features
with RF classication yields an unambiguously improved
performance on the 15 total dataset derived features with regard
to all observed quality parameters (Table 3).

In summary, the inclusion of the eleven additional features
contributed to an improved result with both classiers.
Evidently, the overall poor specicity can also be attributed to
the imbalance of 89 UBC versus 46 control samples in the total
dataset. With continued recruitment of patients, an extended
and more balanced dataset should become available. Both LDA
This journal is ª The Royal Society of Chemistry 2013
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and RF are established classiers. With both, the spectral
separability of blood samples drawn from UBC and control
patients in the current state of the study was demonstrated. The
more complex RF algorithm performs slightly better on the
current data. However, whether these are the optimum per-
forming classiers has to be evaluated in a future study on an
extended dataset.
Conclusion

Blood samples were collected and processed obeying the high-
est clinical standards. We developed a largely automated
procedure for the infrared spectroscopic analysis of body uids.
The highest reproducibility was achieved with minimized user
interaction in sample preparation and data processing.
Unavoidable caveats such as sample inhomogeneity, pipetting
errors, spectral artefacts and classier overtting were tackled
and suitable solutions were presented. Aer excluding all
possible experimental errors and using state of the art bio-
informatics to identify spectral biomarker candidates in body
uids, we ended up with very small spectral differences between
the UBC and the control group. Classication relevant wave-
number variables were not found within the absorbance spectra
of serum or plasma. Fourteen of een relevant features were
identied in the 2nd derivative spectra in calculations
comprising all available data. The identied features (see Fig. 8)
indicate that only very subtle spectral differences at the detec-
tion limit distinguish a UBC patient from the control group. The
FTIR spectroscopic classication of biouids under such a
scheme is extremely challenging, but can be performed using
the utmost advanced sampling, sample preparation tools,
spectrometer hardware with high-throughput accessories and
modern bioinformatics soware. For further validation of this
approach, larger sample numbers are necessary for a nal
validation of a spectral biomarker detection scheme derived
from body uids. A unication of spectrum collections from
groups researching the same diseases and combining them
would provide an extensive database within a short time.
Nevertheless at the moment, the main barrier to achieve this
goal is the lack of standardization of the sample preparation
and spectral measurement. The application of the Bruker HTS-
XT system has nowadays frequently been reported, but sample
preparation was oen done manually or with dedicated, lab-
customized robots not commonly available.

The automated sample preparation, highly reproducible
spectrum recording, and user independent spectrum process-
ing presented here, could be a milestone for building multi-
center FTIR-spectral databases for reliable disease diagnosis
from body uids.
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W. F. Wieland, F. Hofstädter, A. Hartmann and S. Bertz,
BJU Int., 2011, 107, 404–408.

37 Z. Chen, W. Ding, K. Xu, J. Tan, C. Sun, Y. Gou, S. Tong,
G. Xia, Z. Fang and Q. Ding, PLoS One, 2012, 7, e47199.

38 E. Goormaghtigh and J.-M. Ruysschaert, Spectrochim. Acta,
Part A, 1994, 50, 2137–2144.
4102 | Analyst, 2013, 138, 4092–4102
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40 K. Elfrink, J. Ollesch, J. Stöhr, D. Willbold, D. Riesner and
K. Gerwert, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 10815–
10819.

41 Z.-M. Zhang, S. Chen and Y.-Z. Liang, Analyst, 2010, 135,
1138–1146.

42 B. D. Prakash and Y. C. Wei, Analyst, 2011, 136, 3130–3135.
43 K. H. Liland, E.-O. Rukke, E. F. Olsen and T. Isaksson,

Chemom. Intell. Lab. Syst., 2011, 109, 51–56.
44 A. Liaw and M. Wiener, R News, 2002, 2, 18–22.
45 E. Diessel, S. Willmann, P. Kamphaus, R. Kurte, U. Damm

and H. M. Heise, Appl. Spectrosc., 2004, 58, 442–450.
46 E. Diessel, P. Kamphaus, K. Grothe, R. Kurte, U. Damm and

H. M. Heise, Appl. Spectrosc., 2005, 59, 442–451.
47 F. L. Martin, J. G. Kelly, V. Llabjani, P. L. Martin-Hirsch,

I. I. Patel, J. Trevisan, N. J. Fullwood and M. J. Walsh, Nat.
Protoc., 2010, 5, 1748–1760.

48 T. Vahlsing, U. Damm, V. Radhakrishna Kondepati,
S. Leonhardt, M. D. Brendel, B. R. Wood and H. M. Heise,
J. Biophotonics, 2010, 3, 567–578.

49 H. Fabian, P. Lasch and D. Naumann, J. Biomed. Opt., 2005,
10, 031103.

50 H. M. Heise, R. Marbach, T. Koschinsky and F. A. Gries, Appl.
Spectrosc., 1994, 48, 85–95.

51 R. N. Jones, D. Escolar, J. P. Hawranek, P. Neelakantan and
R. P. Young, J. Mol. Struct., 1973, 19, 21–42.

52 H. M. Heise, Asian Chem. Lett., 2009, 13, 163–170.
53 M. Miljkovic, B. Bird and M. Diem, Analyst, 2012, 137, 3954–

3964.
54 R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel

and T. A. Witten, Nature, 1997, 389, 827–829.
55 T. Hirschfeld, Appl. Spectrosc., 1985, 39, 426–430.
56 A. Bittner and H. M. Heise, in AIP Conference Proceedings,

American Institute of Physics, New York, Athens, Georgia,
USA, 1998, vol. 430, pp. 278–281.

57 J. L. Jarman, S. I. Seerley, R. A. Todebush and J. A. de Haseth,
Appl. Spectrosc., 2003, 57, 1078–1086.

58 M. Haberkorn, J. Frank, M. Harasek, J. Nilsson, T. Laurell
and B. Lendl, Appl. Spectrosc., 2002, 56, 902–908.

59 I. Surowiec, J. R. Baena, J. Frank, T. Laurell, J. Nilsson,
M. Trojanowicz and B. Lendl, J. Chromatogr., A, 2005, 1080,
132–139.

60 S. Armenta and B. Lendl, Anal. Bioanal. Chem., 2010, 397,
297–308.

61 M. Boese, Bruker BioSpin, GmbH, US Pat., 7 267 838 B2,
2007.

62 H. Peng, F. Long and C. Ding, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2005, 27, 1226–1238.

63 L. Breiman, Mach. Learn., 2001, 45, 5–32.
64 R. D́ıaz-Uriarte and S. Alvarez de Andrés, BMC Bioinf., 2006,

7, 3.
65 A. Kallenbach-Thieltges, F. Großerüschkamp, A. Mosig,
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